Skip to content

Dataset approched by A Benchmark and Frequency Compression Method for Infrared Few-Shot Object Detection

Notifications You must be signed in to change notification settings

RuihengZhang/IFSOD-dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 

Repository files navigation

IFSOD-dataset

Dataset approched by A Benchmark and Frequency Compression Method for Infrared Few-Shot Object Detection

This dataset aims to provide an open evaluation scheme for small sample object detection tasks. It aims to enrich the training categories and sample pose changes. Contains over 4800 images, over 23000 instances, covering 8 scenes and 18 coarse-grained categories. We have established three random partitions for categories. Each partition contains base classes and new class images that comply with the few sample setting.

1. Dataset Overview

Provide detailed information about the dataset, including:

  • Number of samples: 4800+ images
  • Data format: images in JPG format and XML annotations

2. Dataset Samples

Below are some sample examples from the dataset to give users a better idea of its structure and content.

Sample

Sample 1

  • Description: This sample shows [what the image/data represents]. The corresponding label is [label name or value].

3. Split

Class Split I Split II Split III
Base Class
Armored Car (217) Kettle (122) People (14860)
Car (4167) Pram (196) Umbrella (217)
Bike (716) Goose (193) Luggage (614)
Dog (166) Bus (510) Bike (716)
People (14860) Dog (166) Pram (196)
Switching (241) Car (4167) Etricycle (262)
Truck (153) Duck (112) Ebike (568)
Tricycle (139) Switching (241) Car (4167)
Goose (193) People (14860) Duck (112)
Kettle (122) Tricycle (139) Kettle (122)
Etricycle (262) Ebike (568) Truck (153)
Umbrella (217) Etricycle (262) Armored Car (217)
Guidepost (240) Umbrella (217) Guidepost (240)
Novel Class
Duck (10) Armored Car (10) Bus (10)
Ebike (10) Truck (10) Switching (10)
Pram (10) Bike (10) Tricycle (10)
Bus (10) Luggage (10) Dog (10)
Luggage (10) Guidepost (10) Goose (10)

4. Dataset Comparison Table

The table below provides a comparison of different datasets, including their images, instances, resolution, and other attributes.

Dataset Images Instances Resolution Instance Density Classes Scenes Meaningless Classes Unresolved Classes
RGB-T234 233,928 116,660 (628,459) 0.500 145 8 60 43
M3FD 9,200 34,408 (1001,744) 3.74 6 13 0 0
LLVIP 15,485 41,579 (1028,1024) 2.685 1 7 0 0
IFSOD-dataset (Ours) 4,815 23,333 (662,489) 4.846 18 12 0 0

5. Performance Comparison Table

This table compares the performance of different methods across three novel splits. Results are given for various numbers of shots (1, 2, 3, 5, 10). The best results and the second-best results are highlighted in bold.

Method Venue Backbone 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
Novel Split 1 ----- ----- ----- Novel Split 2 ----- ----- ----- Novel Split 3 ----- ----- -----
FSRW ICCV2019 YOLOv2 8.82 13.55 16.70 23.91 27.21 15.76 15.30 22.77 30.19 29.24 10.20 18.73 22.70 26.67 25.43
Meta R-CNN ICCV2019 FRCN-101 2.52 9.30 13.34 16.34 14.80 4.00 9.82 9.70 7.56 13.68 8.16 10.82 17.04 15.88 17.52
TFA w/cos ICML2020 FRCN-101 5.70 10.32 17.44 21.80 26.12 0.70 7.74 8.86 9.94 16.90 5.54 3.28 5.48 5.76 11.10
MPSR ECCV2020 FRCN-101 9.82 33.04 38.14 45.30 48.48 24.54 25.58 20.72 30.46 43.96 9.78 22.00 36.40 41.84 49.12
FsDetView ECCV2020 FRCN-101 1.82 13.86 15.86 15.16 14.72 4.00 7.98 10.20 7.99 9.94 3.82 7.96 14.52 15.76 15.10
KFSOD CVPR2021 FRCN-101 13.65 22.47 36.44 43.33 58.54 4.82 8.45 30.17 37.11 44.75 21.68 28.43 40.22 38.80 54.79
FSCE CVPR2021 FRCN-101 15.20 21.43 42.20 50.94 55.98 2.66 8.38 34.69 41.55 46.65 24.01 32.15 45.82 50.41 58.30
CME CVPR2021 FRCN-101 6.37 10.76 39.52 44.06 49.79 6.38 7.10 26.50 30.97 37.74 15.17 23.32 27.55 39.79 45.01
FADI NeurIPS2021 FRCN-101 11.53 23.88 36.09 47.86 52.57 22.85 27.54 32.19 42.35 44.11 25.32 35.29 42.80 45.49 49.83
DeFRCN ICCV2021 FRCN-101 12.69 20.59 42.14 44.00 46.16 6.37 10.19 31.80 45.13 37.82 23.53 25.46 36.83 43.38 46.12
FCT CVPR2022 PVTv2 9.97 28.28 43.85 53.91 57.89 25.77 34.72 45.72 50.16 55.32 29.00 34.21 46.87 51.72 54.96

Dataset Download

Important: The dataset is available for download from the link below. Make sure to cite this dataset if you use it in your research.

Baidu yunpan

About

Dataset approched by A Benchmark and Frequency Compression Method for Infrared Few-Shot Object Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published