Dataset approched by A Benchmark and Frequency Compression Method for Infrared Few-Shot Object Detection
This dataset aims to provide an open evaluation scheme for small sample object detection tasks. It aims to enrich the training categories and sample pose changes. Contains over 4800 images, over 23000 instances, covering 8 scenes and 18 coarse-grained categories. We have established three random partitions for categories. Each partition contains base classes and new class images that comply with the few sample setting.
Provide detailed information about the dataset, including:
- Number of samples: 4800+ images
- Data format: images in JPG format and XML annotations
Below are some sample examples from the dataset to give users a better idea of its structure and content.
- Description: This sample shows [what the image/data represents]. The corresponding label is [label name or value].
Class | Split I | Split II | Split III |
---|---|---|---|
Base Class | |||
Armored Car (217) | Kettle (122) | People (14860) | |
Car (4167) | Pram (196) | Umbrella (217) | |
Bike (716) | Goose (193) | Luggage (614) | |
Dog (166) | Bus (510) | Bike (716) | |
People (14860) | Dog (166) | Pram (196) | |
Switching (241) | Car (4167) | Etricycle (262) | |
Truck (153) | Duck (112) | Ebike (568) | |
Tricycle (139) | Switching (241) | Car (4167) | |
Goose (193) | People (14860) | Duck (112) | |
Kettle (122) | Tricycle (139) | Kettle (122) | |
Etricycle (262) | Ebike (568) | Truck (153) | |
Umbrella (217) | Etricycle (262) | Armored Car (217) | |
Guidepost (240) | Umbrella (217) | Guidepost (240) | |
Novel Class | |||
Duck (10) | Armored Car (10) | Bus (10) | |
Ebike (10) | Truck (10) | Switching (10) | |
Pram (10) | Bike (10) | Tricycle (10) | |
Bus (10) | Luggage (10) | Dog (10) | |
Luggage (10) | Guidepost (10) | Goose (10) |
The table below provides a comparison of different datasets, including their images, instances, resolution, and other attributes.
Dataset | Images | Instances | Resolution | Instance Density | Classes | Scenes | Meaningless Classes | Unresolved Classes |
---|---|---|---|---|---|---|---|---|
RGB-T234 | 233,928 | 116,660 | (628,459) | 0.500 | 145 | 8 | 60 | 43 |
M3FD | 9,200 | 34,408 | (1001,744) | 3.74 | 6 | 13 | 0 | 0 |
LLVIP | 15,485 | 41,579 | (1028,1024) | 2.685 | 1 | 7 | 0 | 0 |
IFSOD-dataset (Ours) | 4,815 | 23,333 | (662,489) | 4.846 | 18 | 12 | 0 | 0 |
This table compares the performance of different methods across three novel splits. Results are given for various numbers of shots (1, 2, 3, 5, 10). The best results and the second-best results are highlighted in bold.
Method | Venue | Backbone | 1 | 2 | 3 | 5 | 10 | 1 | 2 | 3 | 5 | 10 | 1 | 2 | 3 | 5 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Novel Split 1 | ----- | ----- | ----- | Novel Split 2 | ----- | ----- | ----- | Novel Split 3 | ----- | ----- | ----- | ||||||
FSRW | ICCV2019 | YOLOv2 | 8.82 | 13.55 | 16.70 | 23.91 | 27.21 | 15.76 | 15.30 | 22.77 | 30.19 | 29.24 | 10.20 | 18.73 | 22.70 | 26.67 | 25.43 |
Meta R-CNN | ICCV2019 | FRCN-101 | 2.52 | 9.30 | 13.34 | 16.34 | 14.80 | 4.00 | 9.82 | 9.70 | 7.56 | 13.68 | 8.16 | 10.82 | 17.04 | 15.88 | 17.52 |
TFA w/cos | ICML2020 | FRCN-101 | 5.70 | 10.32 | 17.44 | 21.80 | 26.12 | 0.70 | 7.74 | 8.86 | 9.94 | 16.90 | 5.54 | 3.28 | 5.48 | 5.76 | 11.10 |
MPSR | ECCV2020 | FRCN-101 | 9.82 | 33.04 | 38.14 | 45.30 | 48.48 | 24.54 | 25.58 | 20.72 | 30.46 | 43.96 | 9.78 | 22.00 | 36.40 | 41.84 | 49.12 |
FsDetView | ECCV2020 | FRCN-101 | 1.82 | 13.86 | 15.86 | 15.16 | 14.72 | 4.00 | 7.98 | 10.20 | 7.99 | 9.94 | 3.82 | 7.96 | 14.52 | 15.76 | 15.10 |
KFSOD | CVPR2021 | FRCN-101 | 13.65 | 22.47 | 36.44 | 43.33 | 58.54 | 4.82 | 8.45 | 30.17 | 37.11 | 44.75 | 21.68 | 28.43 | 40.22 | 38.80 | 54.79 |
FSCE | CVPR2021 | FRCN-101 | 15.20 | 21.43 | 42.20 | 50.94 | 55.98 | 2.66 | 8.38 | 34.69 | 41.55 | 46.65 | 24.01 | 32.15 | 45.82 | 50.41 | 58.30 |
CME | CVPR2021 | FRCN-101 | 6.37 | 10.76 | 39.52 | 44.06 | 49.79 | 6.38 | 7.10 | 26.50 | 30.97 | 37.74 | 15.17 | 23.32 | 27.55 | 39.79 | 45.01 |
FADI | NeurIPS2021 | FRCN-101 | 11.53 | 23.88 | 36.09 | 47.86 | 52.57 | 22.85 | 27.54 | 32.19 | 42.35 | 44.11 | 25.32 | 35.29 | 42.80 | 45.49 | 49.83 |
DeFRCN | ICCV2021 | FRCN-101 | 12.69 | 20.59 | 42.14 | 44.00 | 46.16 | 6.37 | 10.19 | 31.80 | 45.13 | 37.82 | 23.53 | 25.46 | 36.83 | 43.38 | 46.12 |
FCT | CVPR2022 | PVTv2 | 9.97 | 28.28 | 43.85 | 53.91 | 57.89 | 25.77 | 34.72 | 45.72 | 50.16 | 55.32 | 29.00 | 34.21 | 46.87 | 51.72 | 54.96 |
Important: The dataset is available for download from the link below. Make sure to cite this dataset if you use it in your research.