-
Notifications
You must be signed in to change notification settings - Fork 116
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
cb2037e
commit d3fb81c
Showing
1 changed file
with
120 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import unittest | ||
|
||
from robodk import robomath | ||
import random | ||
|
||
|
||
def q_norm(q): | ||
"""Returns the norm of a qaternion""" | ||
return robomath.sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]) | ||
|
||
|
||
SIN45 = robomath.sin(robomath.pi / 4.) | ||
Q_NOISE = 1e-9 # Quaternion noise | ||
Q_NORM_TOLERANCE = max(1e-10, Q_NOISE * 10) # Norm cant be more precise than the noise.. | ||
M_SIMILAR_TOLERANCE = 1e-5 # deg+mm | ||
M_NOISE_ERR_MM = 1e-10 | ||
M_NOISE_ERR_RAD = 1e-3 | ||
|
||
|
||
class TestQuaternion(unittest.TestCase): | ||
|
||
def setUp(self): | ||
H = [] | ||
H.append(robomath.eye(4)) # z with z | ||
H.append(robomath.rotx(robomath.pi)) # Z with z inversed | ||
H.append(robomath.roty(-robomath.pi / 2)) # x with z | ||
H.append(robomath.roty(robomath.pi / 2)) # x with z inversed | ||
H.append(robomath.rotx(robomath.pi / 2)) # y with z | ||
H.append(robomath.rotx(-robomath.pi / 2)) # y with z inversed | ||
|
||
H.append(robomath.KUKA_2_Pose([0, 0, 0, 180, 0, 90])) | ||
H.append(robomath.KUKA_2_Pose([0, 0, 0, 0, 45, 180])) | ||
H.append(robomath.KUKA_2_Pose([0, 0, 0, -180, 45, 0])) | ||
H.append(robomath.KUKA_2_Pose([0, 0, 0, -180, -45, 0])) | ||
|
||
H.append(robomath.TxyzRxyz_2_Pose([0, 0, 0, -robomath.pi, -robomath.pi / 4, 0])) | ||
H.append(robomath.TxyzRxyz_2_Pose([0, 0, 0, -robomath.pi, robomath.pi / 4, 0])) | ||
|
||
h = robomath.eye(4) | ||
h.setVX([SIN45, 0, -SIN45]) | ||
h.setVY([0, -1, 0]) | ||
h.setVZ([-SIN45, 0, -SIN45]) | ||
H.append(h) | ||
|
||
h = robomath.eye(4) | ||
h.setVX([SIN45, 0, SIN45]) | ||
h.setVY([0, -1, 0]) | ||
h.setVZ([SIN45, 0, -SIN45]) | ||
H.append(h) | ||
|
||
for h in list(H): | ||
H.append(h * robomath.rotz(robomath.pi / 2)) | ||
H.append(h * robomath.rotz(robomath.pi / 4)) | ||
H.append(h * robomath.rotz(robomath.pi / 6)) | ||
|
||
for h in list(H): | ||
H.append(h * robomath.rotx(random.uniform(0, 1)) * robomath.roty(random.uniform(0, 1)) * robomath.rotz(random.uniform(0, 1))) | ||
|
||
self.H = H | ||
|
||
return super().setUp() | ||
|
||
def test_matrix_identity(self): | ||
h0 = robomath.eye(4) | ||
self.assertTrue(h0.isHomogeneous()) | ||
q = robomath.pose_2_quaternion(h0) | ||
h1 = robomath.quaternion_2_pose(q) | ||
self.assertEqual(h0, h1) | ||
|
||
def test_quaterion_identity(self): | ||
q0 = [1, 0, 0, 0] | ||
h = robomath.quaternion_2_pose(q0) | ||
self.assertTrue(h.isHomogeneous()) | ||
q1 = robomath.pose_2_quaternion(h) | ||
self.assertEqual(q0, q1) | ||
|
||
def test_quaternion(self): | ||
|
||
Q_NOISE1 = [Q_NOISE for n in range(4)] | ||
Q_NOISE2 = [-Q_NOISE for n in range(4)] | ||
Q_NOISE3 = [[-1, 1][random.randrange(2)] * Q_NOISE for n in range(4)] | ||
|
||
for i, h in enumerate(self.H): | ||
self.assertTrue(h.isHomogeneous()) | ||
|
||
# Pose -> Q | ||
q = robomath.pose_2_quaternion(h) | ||
q_norm_err = abs(q_norm(q) - 1) | ||
self.assertLess(q_norm_err, Q_NORM_TOLERANCE) | ||
|
||
# Pose -> Q -> Pose | ||
hq = robomath.quaternion_2_pose(q) | ||
self.assertTrue(hq.isHomogeneous()) | ||
self.assertTrue(robomath.pose_is_similar(h, hq, M_SIMILAR_TOLERANCE), "pose_is_similar greater than " + str(M_SIMILAR_TOLERANCE)) | ||
self.assertTrue(h == hq) | ||
|
||
# Inject numerical error in the quaternions | ||
for noise in [Q_NOISE1, Q_NOISE2, Q_NOISE3]: | ||
|
||
# Pose -> Q -> Q+Noise | ||
q_noise = [a + b for a, b in zip(q, noise)] | ||
q_norm_err = abs(q_norm(q_noise) - 1) | ||
self.assertLess(q_norm_err, Q_NORM_TOLERANCE) | ||
|
||
# Pose -> Q -> Q+Noise -> Pose+Noise | ||
h_noise = robomath.quaternion_2_pose(q_noise) | ||
self.assertTrue(h_noise.isHomogeneous()) | ||
|
||
# Compare with original Pose | ||
h2_err = h.inv() * h_noise | ||
self.assertTrue(h2_err.isHomogeneous()) | ||
mm_err = robomath.norm(h2_err.Pos()) | ||
ang_err = robomath.pose_angle(h2_err) | ||
self.assertLess(mm_err, M_NOISE_ERR_MM) | ||
self.assertLess(ang_err, M_NOISE_ERR_RAD) | ||
|
||
|
||
if __name__ == '__main__': | ||
import unittest | ||
unittest.main() |