Skip to content

Commit

Permalink
🔥 remove comments
Browse files Browse the repository at this point in the history
  • Loading branch information
Henry committed Jul 5, 2024
1 parent b8b4769 commit 2927d3f
Showing 1 changed file with 1 addition and 46 deletions.
47 changes: 1 addition & 46 deletions src/move/tasks/identify_associations.py
Original file line number Diff line number Diff line change
Expand Up @@ -484,9 +484,6 @@ def _bayes_approach_parallel(
f"bayes_abs max is {bayes_max}. Bayes_abs min is {bayes_min}. "
f"Bayes_abs shape is {bayes_abs_shape}"
)
# file_path = output_path / "bayes_abs_multi.tsv"
# logger.debug(f"Saving bayes_abs to {file_path}")
# np.savetxt(file_path, bayes_abs, delimiter='\t')

bayes_p = np.exp(bayes_abs) / (
1 + np.exp(bayes_abs)
Expand Down Expand Up @@ -662,74 +659,32 @@ def _bayes_approach(
mask = diff.mask # Extract the mask from the masked array
# Replace masked values with a placeholder (e.g., np.nan)
data[mask] = np.nan
# Define the file path to save the TSV file
# output_path = Path(config.data.results_path) / "identify_associations"
# file_path = output_path / "diff_normal.tsv"
# Save the data to the TSV fil
# logger.debug(f"Saving diff to {file_path}")
# np.savetxt(file_path, diff, delimiter="\t")

# data = prob.data # Extract the data from the masked array
# mask = prob.mask # Extract the mask from the masked array
# Replace masked values with a placeholder (e.g., np.nan)
# data[mask] = np.nan
# Define the file path to save the TSV file
# output_path = Path(config.data.results_path) / "identify_associations"
# file_path = output_path / "prob_original_script.tsv"
# # Save the data to the TSV fil
# logger.debug(f"Saving prob to {file_path}")
# np.savetxt(file_path, prob, delimiter="\t")
# logger.debug(f"prob is {prob}")

# file_path = output_path / "bayes_k_original_all.tsv"
# logger.debug(f"Saving bayes_k (not worker, all) to {file_path}")
# np.savetxt(file_path, bayes_k, delimiter="\t")

bayes_mask[bayes_mask != 0] = 1
bayes_mask = np.array(bayes_mask, dtype=bool)

# Calculate Bayes probabilities
bayes_abs = np.abs(bayes_k)
# file_path = output_path / "bayes_abs_original.tsv"
# logger.debug(f"Saving bayes_abs to {file_path}")
# np.savetxt(file_path, bayes_abs, delimiter="\t")

bayes_p = np.exp(bayes_abs) / (1 + np.exp(bayes_abs)) # 2D: N x C
# file_path = output_path / "bayes_p_original.tsv"
# logger.debug(f"Saving bayes_p to {file_path}")
# np.savetxt(file_path, bayes_p, delimiter="\t")

# ! Marc said this is needed to not identify the features with themselves
bayes_abs[bayes_mask] = np.min(
bayes_abs
) # Bring feature_i feature_i associations to minimum
sort_ids = np.argsort(bayes_abs, axis=None)[::-1] # 1D: N x C
# file_path = output_path / "sort_ids_original_script.tsv"
# logger.debug(f"Saving sort_ids to {file_path}")
# np.savetxt(file_path, sort_ids, delimiter="\t")
logger.debug(f"sort_ids are {sort_ids}")

prob = np.take(bayes_p, sort_ids) # 1D: N x C
# file_path = output_path / "prob_original_final.tsv"
# logger.debug(f"Saving prob to {file_path}")
# np.savetxt(file_path, prob, delimiter="\t")
logger.debug(f"Bayes proba range: [{prob[-1]:.3f} {prob[0]:.3f}]")

# Sort Bayes
bayes_k = np.take(bayes_k, sort_ids) # 1D: N x C
# file_path = output_path / "sorted_bayes_k_original_script.tsv"
# logger.debug(f"Saving sorted_bayes_k to {file_path}")
# np.savetxt(file_path, bayes_k, delimiter="\t")

# Calculate FDR
fdr = np.cumsum(1 - prob) / np.arange(1, prob.size + 1) # 1D
# file_path = output_path / "fdr_original_script.tsv"
# logger.debug(f"Saving fdr to {file_path}")
# np.savetxt(file_path, fdr, delimiter="\t")
idx = np.argmin(np.abs(fdr - task_config.sig_threshold))
logger.debug(f"Index is {idx}")
# file_path = output_path / "idx_original_script.tsv"
# logger.debug(f"Saving idx to {file_path}")
# np.savetxt(file_path, idx, delimiter='\t')
logger.debug(f"FDR range: [{fdr[0]:.3f} {fdr[-1]:.3f}]")

return sort_ids[:idx], prob[:idx], fdr[:idx], bayes_k[:idx]
Expand Down

0 comments on commit 2927d3f

Please sign in to comment.