Skip to content

Commit

Permalink
Docs: Replace terms.md page with page that provides example of API ma…
Browse files Browse the repository at this point in the history
…pping
  • Loading branch information
adeljo-amd committed Feb 3, 2025
1 parent d279278 commit 98b73d1
Show file tree
Hide file tree
Showing 5 changed files with 180 additions and 79 deletions.
33 changes: 1 addition & 32 deletions docs/faq.rst
Original file line number Diff line number Diff line change
Expand Up @@ -65,38 +65,7 @@ platforms.
Additional porting might be required to deal with architecture feature
queries or CUDA capabilities that HIP doesn't support.

How does HIP compare with OpenCL?
---------------------------------

HIP offers several benefits over OpenCL:

* Device code can be written in modern C++, including templates, lambdas,
classes and so on.
* Host and device code can be mixed in the source files.
* The HIP API is less verbose than OpenCL and is familiar to CUDA developers.
* Porting from CUDA to HIP is significantly easier than from CUDA to OpenCL.
* HIP uses development tools specialized for each platform: :doc:`amdclang++ <llvm-project:index>`
for AMD GPUs or `nvcc <https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html>`_
for NVIDIA GPUs, and profilers like :doc:`ROCm Compute Profiler <rocprofiler-compute:index>` or
`Nsight Systems <https://developer.nvidia.com/nsight-systems>`_.
* HIP provides
* pointers and host-side pointer arithmetic.
* device-level control over memory allocation and placement.
* an offline compilation model.

How does porting CUDA to HIP compare to porting CUDA to OpenCL?
---------------------------------------------------------------

OpenCL differs from HIP and CUDA when considering the host runtime,
but even more so when considering the kernel code.
The HIP device code is a C++ dialect, while OpenCL is C99-based.
OpenCL does not support single-source compilation.

As a result, the OpenCL syntax differs significantly from HIP, and porting tools
must perform complex transformations, especially regarding templates or other
C++ features in kernels.

To better understand the syntax differences, see :doc:`here<reference/terms>` or
To better understand the syntax differences, see :doc:`here<reference/api_syntax>` or
the :doc:`HIP porting guide <how-to/hip_porting_guide>`.

Can I install CUDA and ROCm on the same machine?
Expand Down
2 changes: 1 addition & 1 deletion docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ The HIP documentation is organized into the following categories:
* [HSA runtime API for ROCm](./reference/virtual_rocr)
* [HIP math API](./reference/math_api)
* [HIP environment variables](./reference/env_variables)
* [Comparing syntax for different APIs](./reference/terms)
* [CUDA to HIP API Syntax: A Quick Comparison](./reference/api_syntax)
* [List of deprecated APIs](./reference/deprecated_api_list)
* [FP8 numbers in HIP](./reference/fp8_numbers)
* {doc}`./reference/hardware_features`
Expand Down
177 changes: 177 additions & 0 deletions docs/reference/api_syntax.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
.. meta::
:description: Maps CUDA API syntax to HIP API syntax with an example
:keywords: AMD, ROCm, HIP, CUDA, syntax, HIP syntax

********************************************************************************
CUDA to HIP API Syntax: A Quick Comparison
********************************************************************************

This page introduces key syntax differences between CUDA and HIP APIs with a focused code
example and comparison table. For a complete list of mappings, visit :ref:`HIPIFY <HIPIFY:index>`.

The CUDA code block below illustrates several CUDA API syntaxes.

.. code-block:: cpp
#include <iostream>
#include <vector>
#include <cuda_runtime.h>
__global__ void block_reduction(const float* input, float* output, int num_elements)
{
extern __shared__ float s_data[];
int tid = threadIdx.x;
int global_id = blockDim.x * blockIdx.x + tid;
if (global_id < num_elements)
{
s_data[tid] = input[global_id];
}
else
{
s_data[tid] = 0.0f;
}
__syncthreads();
for (int stride = blockDim.x / 2; stride > 0; stride >>= 1)
{
if (tid < stride)
{
s_data[tid] += s_data[tid + stride];
}
__syncthreads();
}
if (tid == 0)
{
output[blockIdx.x] = s_data[0];
}
}
int main()
{
int threads = 256;
const int num_elements = 50000;
std::vector<float> h_a(num_elements);
std::vector<float> h_b((num_elements + threads - 1) / threads);
for (int i = 0; i < num_elements; ++i)
{
h_a[i] = rand() / static_cast<float>(RAND_MAX);
}
float *d_a, *d_b;
cudaMalloc(&d_a, h_a.size() * sizeof(float));
cudaMalloc(&d_b, h_b.size() * sizeof(float));
cudaStream_t stream;
cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
cudaEvent_t start_event, stop_event;
cudaEventCreate(&start_event);
cudaEventCreate(&stop_event);
cudaMemcpyAsync(d_a, h_a.data(), h_a.size() * sizeof(float), cudaMemcpyHostToDevice, stream);
cudaEventRecord(start_event, stream);
int blocks = (num_elements + threads - 1) / threads;
block_reduction<<<blocks, threads, threads * sizeof(float), stream>>>(d_a, d_b, num_elements);
cudaMemcpyAsync(h_b.data(), d_b, h_b.size() * sizeof(float), cudaMemcpyDeviceToHost, stream);
cudaEventRecord(stop_event, stream);
cudaEventSynchronize(stop_event);
cudaEventElapsedTime(&milliseconds, start_event, stop_event);
std::cout << "Kernel execution time: " << milliseconds << " ms\n";
cudaFree(d_a);
cudaFree(d_b);
cudaEventDestroy(start_event);
cudaEventDestroy(stop_event);
cudaStreamDestroy(stream);
return 0;
}
The table below maps CUDA API syntax to corresponding HIP API syntax, as demonstrated in the
preceding code examples.

.. list-table::
:header-rows: 1
:name: syntax-mapping-table

*
- CUDA
- HIP

*
- ``#include <cuda_runtime.h>``
- ``#include <hip/hip_runtime.h>``

*
- ``cudaError_t``
- ``hipError_t``

*
- ``cudaEvent_t``
- ``hipEvent_t``

*
- ``cudaStream_t``
- ``hipStream_t``

*
- ``cudaMalloc``
- ``hipMalloc``

*
- ``cudaStreamCreateWithFlags``
- ``hipStreamCreateWithFlags``

*
- ``cudaStreamNonBlocking``
- ``hipStreamNonBlocking``

*
- ``cudaEventCreate``
- ``hipEventCreate``

*
- ``cudaMemcpyAsync``
- ``hipMemcpyAsync``

*
- ``cudaMemcpyHostToDevice``
- ``hipMemcpyHostToDevice``

*
- ``cudaEventRecord``
- ``hipEventRecord``

*
- ``cudaEventSynchronize``
- ``hipEventSynchronize``

*
- ``cudaEventElapsedTime``
- ``hipEventElapsedTime``

*
- ``cudaFree``
- ``hipFree``

*
- ``cudaEventDestroy``
- ``hipEventDestroy``

*
- ``cudaStreamDestroy``
- ``hipStreamDestroy``

In summary, this comparison highlights the primary syntax differences between CUDA and HIP APIs.
For a complete list of mappings, visit :ref:`HIPIFY <HIPIFY:index>`.
44 changes: 0 additions & 44 deletions docs/reference/terms.md

This file was deleted.

3 changes: 1 addition & 2 deletions docs/sphinx/_toc.yml.in
Original file line number Diff line number Diff line change
Expand Up @@ -111,8 +111,7 @@ subtrees:
- file: reference/virtual_rocr
- file: reference/math_api
- file: reference/env_variables
- file: reference/terms
title: Comparing syntax for different APIs
- file: reference/api_syntax
- file: reference/deprecated_api_list
title: List of deprecated APIs
- file: reference/fp8_numbers
Expand Down

0 comments on commit 98b73d1

Please sign in to comment.