Skip to content

Commit

Permalink
Fix mypy issue introduced in 1.11.0 (#7941)
Browse files Browse the repository at this point in the history
Fixes #7940 .

### Description
Refer: https://mypy.readthedocs.io/en/stable/common_issues.html

### Types of changes
<!--- Put an `x` in all the boxes that apply, and remove the not
applicable items -->
- [x] Non-breaking change (fix or new feature that would not break
existing functionality).
- [ ] Breaking change (fix or new feature that would cause existing
functionality to change).
- [ ] New tests added to cover the changes.
- [ ] Integration tests passed locally by running `./runtests.sh -f -u
--net --coverage`.
- [ ] Quick tests passed locally by running `./runtests.sh --quick
--unittests --disttests`.
- [ ] In-line docstrings updated.
- [ ] Documentation updated, tested `make html` command in the `docs/`
folder.

---------

Signed-off-by: YunLiu <[email protected]>
  • Loading branch information
KumoLiu authored Jul 22, 2024
1 parent d020fac commit 7a8680e
Show file tree
Hide file tree
Showing 10 changed files with 37 additions and 35 deletions.
2 changes: 1 addition & 1 deletion monai/apps/auto3dseg/hpo_gen.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def update_params(self, *args, **kwargs):
raise NotImplementedError

@abstractmethod
def set_score(self):
def set_score(self, *args, **kwargs):
"""Report the evaluated results to HPO."""
raise NotImplementedError

Expand Down
10 changes: 6 additions & 4 deletions monai/apps/pathology/transforms/post/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
SobelGradients,
)
from monai.transforms.transform import Transform
from monai.transforms.utils_pytorch_numpy_unification import max, maximum, min, sum, unique
from monai.transforms.utils_pytorch_numpy_unification import max, maximum, min, sum, unique, where
from monai.utils import TransformBackends, convert_to_numpy, optional_import
from monai.utils.misc import ensure_tuple_rep
from monai.utils.type_conversion import convert_to_dst_type, convert_to_tensor
Expand Down Expand Up @@ -162,7 +162,8 @@ def __call__(self, prob_map: NdarrayOrTensor) -> NdarrayOrTensor:
pred = label(pred)[0]
if self.remove_small_objects is not None:
pred = self.remove_small_objects(pred)
pred[pred > 0] = 1
pred_indices = np.where(pred > 0)
pred[pred_indices] = 1

return convert_to_dst_type(pred, prob_map, dtype=self.dtype)[0]

Expand Down Expand Up @@ -338,7 +339,8 @@ def __call__(self, mask: NdarrayOrTensor, instance_border: NdarrayOrTensor) -> N
instance_border = instance_border >= self.threshold # uncertain area

marker = mask - convert_to_dst_type(instance_border, mask)[0] # certain foreground
marker[marker < 0] = 0
marker_indices = where(marker < 0)
marker[marker_indices] = 0 # type: ignore[index]
marker = self.postprocess_fn(marker)
marker = convert_to_numpy(marker)

Expand Down Expand Up @@ -635,7 +637,7 @@ def __call__( # type: ignore

seg_map_crop = convert_to_dst_type(seg_map_crop == instance_id, type_map_crop, dtype=bool)[0]

inst_type = type_map_crop[seg_map_crop]
inst_type = type_map_crop[seg_map_crop] # type: ignore[index]
type_list, type_pixels = unique(inst_type, return_counts=True)
type_list = list(zip(type_list, type_pixels))
type_list = sorted(type_list, key=lambda x: x[1], reverse=True)
Expand Down
4 changes: 2 additions & 2 deletions monai/data/meta_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -505,7 +505,7 @@ def peek_pending_rank(self):
a = self.pending_operations[-1].get(LazyAttr.AFFINE, None) if self.pending_operations else self.affine
return 1 if a is None else int(max(1, len(a) - 1))

def new_empty(self, size, dtype=None, device=None, requires_grad=False):
def new_empty(self, size, dtype=None, device=None, requires_grad=False): # type: ignore[override]
"""
must be defined for deepcopy to work
Expand Down Expand Up @@ -580,7 +580,7 @@ def ensure_torch_and_prune_meta(
img.affine = MetaTensor.get_default_affine()
return img

def __repr__(self):
def __repr__(self): # type: ignore[override]
"""
Prints a representation of the tensor.
Prepends "meta" to ``torch.Tensor.__repr__``.
Expand Down
2 changes: 1 addition & 1 deletion monai/networks/layers/simplelayers.py
Original file line number Diff line number Diff line change
Expand Up @@ -452,7 +452,7 @@ def get_binary_kernel(window_size: Sequence[int], dtype=torch.float, device=None

def median_filter(
in_tensor: torch.Tensor,
kernel_size: Sequence[int] = (3, 3, 3),
kernel_size: Sequence[int] | int = (3, 3, 3),
spatial_dims: int = 3,
kernel: torch.Tensor | None = None,
**kwargs,
Expand Down
12 changes: 6 additions & 6 deletions monai/networks/nets/quicknat.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ class SkipConnectionWithIdx(SkipConnection):
Inherits from SkipConnection but provides the indizes with each forward pass.
"""

def forward(self, input, indices):
def forward(self, input, indices): # type: ignore[override]
return super().forward(input), indices


Expand All @@ -57,7 +57,7 @@ class SequentialWithIdx(nn.Sequential):
def __init__(self, *args):
super().__init__(*args)

def forward(self, input, indices):
def forward(self, input, indices): # type: ignore[override]
for module in self:
input, indices = module(input, indices)
return input, indices
Expand Down Expand Up @@ -165,7 +165,7 @@ def _get_layer(self, in_channels, out_channels, dilation):
)
return nn.Sequential(conv.get_submodule("adn"), conv.get_submodule("conv"))

def forward(self, input, _):
def forward(self, input, _): # type: ignore[override]
i = 0
result = input
result1 = input # this will not stay this value, needed here for pylint/mypy
Expand Down Expand Up @@ -215,7 +215,7 @@ def __init__(self, in_channels: int, max_pool, se_layer, dropout, kernel_size, n
super().__init__(in_channels, se_layer, dropout, kernel_size, num_filters)
self.max_pool = max_pool

def forward(self, input, indices=None):
def forward(self, input, indices=None): # type: ignore[override]
input, indices = self.max_pool(input)

out_block, _ = super().forward(input, None)
Expand Down Expand Up @@ -243,7 +243,7 @@ def __init__(self, in_channels: int, un_pool, se_layer, dropout, kernel_size, nu
super().__init__(in_channels, se_layer, dropout, kernel_size, num_filters)
self.un_pool = un_pool

def forward(self, input, indices):
def forward(self, input, indices): # type: ignore[override]
out_block, _ = super().forward(input, None)
out_block = self.un_pool(out_block, indices)
return out_block, None
Expand All @@ -270,7 +270,7 @@ def __init__(self, in_channels: int, se_layer, dropout, max_pool, un_pool, kerne
self.max_pool = max_pool
self.un_pool = un_pool

def forward(self, input, indices):
def forward(self, input, indices): # type: ignore[override]
out_block, indices = self.max_pool(input)
out_block, _ = super().forward(out_block, None)
out_block = self.un_pool(out_block, indices)
Expand Down
16 changes: 8 additions & 8 deletions monai/transforms/croppad/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -362,10 +362,10 @@ def __init__(self, lazy: bool = False):

@staticmethod
def compute_slices(
roi_center: Sequence[int] | NdarrayOrTensor | None = None,
roi_size: Sequence[int] | NdarrayOrTensor | None = None,
roi_start: Sequence[int] | NdarrayOrTensor | None = None,
roi_end: Sequence[int] | NdarrayOrTensor | None = None,
roi_center: Sequence[int] | int | NdarrayOrTensor | None = None,
roi_size: Sequence[int] | int | NdarrayOrTensor | None = None,
roi_start: Sequence[int] | int | NdarrayOrTensor | None = None,
roi_end: Sequence[int] | int | NdarrayOrTensor | None = None,
roi_slices: Sequence[slice] | None = None,
) -> tuple[slice]:
"""
Expand Down Expand Up @@ -459,10 +459,10 @@ class SpatialCrop(Crop):

def __init__(
self,
roi_center: Sequence[int] | NdarrayOrTensor | None = None,
roi_size: Sequence[int] | NdarrayOrTensor | None = None,
roi_start: Sequence[int] | NdarrayOrTensor | None = None,
roi_end: Sequence[int] | NdarrayOrTensor | None = None,
roi_center: Sequence[int] | int | NdarrayOrTensor | None = None,
roi_size: Sequence[int] | int | NdarrayOrTensor | None = None,
roi_start: Sequence[int] | int | NdarrayOrTensor | None = None,
roi_end: Sequence[int] | int | NdarrayOrTensor | None = None,
roi_slices: Sequence[slice] | None = None,
lazy: bool = False,
) -> None:
Expand Down
8 changes: 4 additions & 4 deletions monai/transforms/croppad/dictionary.py
Original file line number Diff line number Diff line change
Expand Up @@ -438,10 +438,10 @@ class SpatialCropd(Cropd):
def __init__(
self,
keys: KeysCollection,
roi_center: Sequence[int] | None = None,
roi_size: Sequence[int] | None = None,
roi_start: Sequence[int] | None = None,
roi_end: Sequence[int] | None = None,
roi_center: Sequence[int] | int | None = None,
roi_size: Sequence[int] | int | None = None,
roi_start: Sequence[int] | int | None = None,
roi_end: Sequence[int] | int | None = None,
roi_slices: Sequence[slice] | None = None,
allow_missing_keys: bool = False,
lazy: bool = False,
Expand Down
2 changes: 1 addition & 1 deletion monai/transforms/spatial/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -3441,7 +3441,7 @@ def filter_count(self, image_np: NdarrayOrTensor, locations: np.ndarray) -> tupl
idx = self.R.permutation(image_np.shape[0])
idx = idx[: self.num_patches]
idx_np = convert_data_type(idx, np.ndarray)[0]
image_np = image_np[idx]
image_np = image_np[idx] # type: ignore[index]
locations = locations[idx_np]
return image_np, locations
elif self.sort_fn not in (None, GridPatchSort.MIN, GridPatchSort.MAX):
Expand Down
10 changes: 5 additions & 5 deletions monai/visualize/class_activation_maps.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,7 +290,7 @@ def __init__(
)
self.fc_layers = fc_layers

def compute_map(self, x, class_idx=None, layer_idx=-1, **kwargs):
def compute_map(self, x, class_idx=None, layer_idx=-1, **kwargs): # type: ignore[override]
logits, acti, _ = self.nn_module(x, **kwargs)
acti = acti[layer_idx]
if class_idx is None:
Expand All @@ -302,7 +302,7 @@ def compute_map(self, x, class_idx=None, layer_idx=-1, **kwargs):
output = torch.stack([output[i, b : b + 1] for i, b in enumerate(class_idx)], dim=0)
return output.reshape(b, 1, *spatial) # resume the spatial dims on the selected class

def __call__(self, x, class_idx=None, layer_idx=-1, **kwargs):
def __call__(self, x, class_idx=None, layer_idx=-1, **kwargs): # type: ignore[override]
"""
Compute the activation map with upsampling and postprocessing.
Expand Down Expand Up @@ -361,15 +361,15 @@ class GradCAM(CAMBase):
"""

def compute_map(self, x, class_idx=None, retain_graph=False, layer_idx=-1, **kwargs):
def compute_map(self, x, class_idx=None, retain_graph=False, layer_idx=-1, **kwargs): # type: ignore[override]
_, acti, grad = self.nn_module(x, class_idx=class_idx, retain_graph=retain_graph, **kwargs)
acti, grad = acti[layer_idx], grad[layer_idx]
b, c, *spatial = grad.shape
weights = grad.view(b, c, -1).mean(2).view(b, c, *[1] * len(spatial))
acti_map = (weights * acti).sum(1, keepdim=True)
return F.relu(acti_map)

def __call__(self, x, class_idx=None, layer_idx=-1, retain_graph=False, **kwargs):
def __call__(self, x, class_idx=None, layer_idx=-1, retain_graph=False, **kwargs): # type: ignore[override]
"""
Compute the activation map with upsampling and postprocessing.
Expand Down Expand Up @@ -401,7 +401,7 @@ class GradCAMpp(GradCAM):
"""

def compute_map(self, x, class_idx=None, retain_graph=False, layer_idx=-1, **kwargs):
def compute_map(self, x, class_idx=None, retain_graph=False, layer_idx=-1, **kwargs): # type: ignore[override]
_, acti, grad = self.nn_module(x, class_idx=class_idx, retain_graph=retain_graph, **kwargs)
acti, grad = acti[layer_idx], grad[layer_idx]
b, c, *spatial = grad.shape
Expand Down
6 changes: 3 additions & 3 deletions tests/test_subpixel_upsample.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,9 +55,9 @@
(2, 1, 32, 16, 8),
]

TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_2D_EXTRA)
TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_3D_EXTRA)
TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA)
TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_2D_EXTRA) # type: ignore
TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_3D_EXTRA) # type: ignore
TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA) # type: ignore

# add every test back with the pad/pool sequential component omitted
for tests in list(TEST_CASE_SUBPIXEL):
Expand Down

0 comments on commit 7a8680e

Please sign in to comment.