-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3508211
commit 2d55074
Showing
1 changed file
with
196 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
# Copyright (c) MONAI Consortium | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import annotations | ||
|
||
import unittest | ||
|
||
from parameterized import parameterized | ||
|
||
from monai.transforms import ClipIntensityPercentilesd | ||
from monai.transforms.utils_pytorch_numpy_unification import clip, percentile | ||
from monai.utils.type_conversion import convert_to_tensor | ||
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, NumpyImageTestCase3D, assert_allclose | ||
|
||
from .test_clip_intensity_percentiles import test_hard_clip_func, test_soft_clip_func | ||
|
||
|
||
class TestClipIntensityPercentilesd2D(NumpyImageTestCase2D): | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_hard_clipping_two_sided(self, p): | ||
key = "img" | ||
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5) | ||
im = p(self.imt) | ||
result = hard_clipper({key: im}) | ||
expected = test_hard_clip_func(im, 5, 95) | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_hard_clipping_one_sided_high(self, p): | ||
key = "img" | ||
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=None) | ||
im = p(self.imt) | ||
result = hard_clipper({key: im}) | ||
expected = test_hard_clip_func(im, 0, 95) | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_hard_clipping_one_sided_low(self, p): | ||
key = "img" | ||
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=None, lower=5) | ||
im = p(self.imt) | ||
result = hard_clipper({key: im}) | ||
expected = test_hard_clip_func(im, 5, 100) | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_soft_clipping_two_sided(self, p): | ||
key = "img" | ||
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5, sharpness_factor=1.0) | ||
im = p(self.imt) | ||
result = soft_clipper({key: im}) | ||
expected = test_soft_clip_func(im, 5, 95) | ||
# the rtol is set to 1e-4 because the logaddexp function used in softplus is not stable accross torch and numpy | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_soft_clipping_one_sided_high(self, p): | ||
key = "img" | ||
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=None, sharpness_factor=1.0) | ||
im = p(self.imt) | ||
result = soft_clipper({key: im}) | ||
expected = test_soft_clip_func(im, None, 95) | ||
# the rtol is set to 1e-4 because the logaddexp function used in softplus is not stable accross torch and numpy | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_soft_clipping_one_sided_low(self, p): | ||
key = "img" | ||
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=None, lower=5, sharpness_factor=1.0) | ||
im = p(self.imt) | ||
result = soft_clipper({key: im}) | ||
expected = test_soft_clip_func(im, 5, None) | ||
# the rtol is set to 1e-4 because the logaddexp function used in softplus is not stable accross torch and numpy | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_channel_wise(self, p): | ||
key = "img" | ||
clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5, channel_wise=True) | ||
im = p(self.imt) | ||
result = clipper({key: im}) | ||
im_t = convert_to_tensor(self.imt) | ||
for i, c in enumerate(im_t): | ||
lower, upper = percentile(c, (5, 95)) | ||
expected = clip(c, lower, upper) | ||
assert_allclose(result[key][i], p(expected), type_test="tensor", rtol=1e-3, atol=0) | ||
|
||
def test_ill_sharpness_factor(self): | ||
key = "img" | ||
with self.assertRaises(ValueError): | ||
ClipIntensityPercentilesd(keys=[key], upper=95, lower=5, sharpness_factor=0.0) | ||
|
||
def test_ill_lower_percentile(self): | ||
key = "img" | ||
with self.assertRaises(ValueError): | ||
ClipIntensityPercentilesd(keys=[key], upper=None, lower=-1) | ||
|
||
def test_ill_upper_percentile(self): | ||
key = "img" | ||
with self.assertRaises(ValueError): | ||
ClipIntensityPercentilesd(keys=[key], upper=101, lower=None) | ||
|
||
def test_ill_percentiles(self): | ||
key = "img" | ||
with self.assertRaises(ValueError): | ||
ClipIntensityPercentilesd(keys=[key], upper=95, lower=96) | ||
|
||
def test_ill_both_none(self): | ||
key = "img" | ||
with self.assertRaises(ValueError): | ||
ClipIntensityPercentilesd(keys=[key], upper=None, lower=None) | ||
|
||
|
||
class TestClipIntensityPercentilesd3D(NumpyImageTestCase3D): | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_hard_clipping_two_sided(self, p): | ||
key = "img" | ||
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5) | ||
im = p(self.imt) | ||
result = hard_clipper({key: im}) | ||
expected = test_hard_clip_func(im, 5, 95) | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_hard_clipping_one_sided_high(self, p): | ||
key = "img" | ||
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=None) | ||
im = p(self.imt) | ||
result = hard_clipper({key: im}) | ||
expected = test_hard_clip_func(im, 0, 95) | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_hard_clipping_one_sided_low(self, p): | ||
key = "img" | ||
hard_clipper = ClipIntensityPercentilesd(keys=[key], upper=None, lower=5) | ||
im = p(self.imt) | ||
result = hard_clipper({key: im}) | ||
expected = test_hard_clip_func(im, 5, 100) | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_soft_clipping_two_sided(self, p): | ||
key = "img" | ||
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5, sharpness_factor=1.0) | ||
im = p(self.imt) | ||
result = soft_clipper({key: im}) | ||
expected = test_soft_clip_func(im, 5, 95) | ||
# the rtol is set to 1e-4 because the logaddexp function used in softplus is not stable accross torch and numpy | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_soft_clipping_one_sided_high(self, p): | ||
key = "img" | ||
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=None, sharpness_factor=1.0) | ||
im = p(self.imt) | ||
result = soft_clipper({key: im}) | ||
expected = test_soft_clip_func(im, None, 95) | ||
# the rtol is set to 1e-4 because the logaddexp function used in softplus is not stable accross torch and numpy | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_soft_clipping_one_sided_low(self, p): | ||
key = "img" | ||
soft_clipper = ClipIntensityPercentilesd(keys=[key], upper=None, lower=5, sharpness_factor=1.0) | ||
im = p(self.imt) | ||
result = soft_clipper({key: im}) | ||
expected = test_soft_clip_func(im, 5, None) | ||
# the rtol is set to 1e-6 because the logaddexp function used in softplus is not stable accross torch and numpy | ||
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
@parameterized.expand([[p] for p in TEST_NDARRAYS]) | ||
def test_channel_wise(self, p): | ||
key = "img" | ||
clipper = ClipIntensityPercentilesd(keys=[key], upper=95, lower=5, channel_wise=True) | ||
im = p(self.imt) | ||
result = clipper({key: im}) | ||
im_t = convert_to_tensor(im) | ||
for i, c in enumerate(im_t): | ||
lower, upper = percentile(c, (5, 95)) | ||
expected = clip(c, lower, upper) | ||
assert_allclose(result[key][i], p(expected), type_test="tensor", rtol=1e-4, atol=0) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |