Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add NCF_PyTorch models #535

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
tests/vocab.pkl
.idea/
.vscode/

# Byte-compiled / optimized / DLL files
__pycache__/
Expand Down
2 changes: 1 addition & 1 deletion cornac/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@
from .ncf import GMF
from .ncf import MLP
from .ncf import NeuMF
from .ncf import GMF_PyTorch, MLP_PyTorch, NeuMF_PyTorch
from .ngcf import NGCF
from .nmf import NMF
from .online_ibpr import OnlineIBPR
Expand All @@ -74,4 +75,3 @@
"FM model is only supported on Linux.\n"
+ "Windows executable can be found at http://www.libfm.org."
)

3 changes: 3 additions & 0 deletions cornac/models/ncf/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,3 +16,6 @@
from .recom_gmf import GMF
from .recom_mlp import MLP
from .recom_neumf import NeuMF
from .pytorch_gmf import GMF_PyTorch
from .pytorch_mlp import MLP_PyTorch
from .pytorch_neumf import NeuMF_PyTorch
267 changes: 267 additions & 0 deletions cornac/models/ncf/pytorch_gmf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,267 @@
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================


import numpy as np
import torch
import torch.nn as nn
from tqdm.auto import trange

from .pytorch_ncf_base import NCFBase_PyTorch
from ...exception import ScoreException


class GMF_PyTorch(NCFBase_PyTorch):
"""Generalized Matrix Factorization.

Parameters
----------
num_factors: int, optional, default: 8
Embedding size of MF model.

regs: float, optional, default: 0.
Regularization for user and item embeddings.

num_epochs: int, optional, default: 20
Number of epochs.

batch_size: int, optional, default: 256
Batch size.

num_neg: int, optional, default: 4
Number of negative instances to pair with a positive instance.

lr: float, optional, default: 0.001
Learning rate.

learner: str, optional, default: 'adam'
Specify an optimizer: adagrad, adam, rmsprop, sgd

early_stopping: {min_delta: float, patience: int}, optional, default: None
If `None`, no early stopping. Meaning of the arguments:

- `min_delta`: the minimum increase in monitored value on validation set to be considered as improvement, \
i.e. an increment of less than min_delta will count as no improvement.

- `patience`: number of epochs with no improvement after which training should be stopped.

name: string, optional, default: 'GMF'
Name of the recommender model.

trainable: boolean, optional, default: True
When False, the model is not trained and Cornac assumes that the model is already \
pre-trained.

verbose: boolean, optional, default: False
When True, some running logs are displayed.

seed: int, optional, default: None
Random seed for parameters initialization.

References
----------
* He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural collaborative filtering. \
In Proceedings of the 26th international conference on world wide web (pp. 173-182).
"""

def __init__(
self,
name="GMF-PyTorch",
num_factors=8,
num_epochs=20,
batch_size=256,
num_neg=4,
lr=1e-3,
reg=0.0,
learner="adam",
early_stopping=None,
trainable=True,
verbose=True,
seed=None,
use_pretrain: bool = False,
use_NeuMF: bool = False,
pretrained_GMF=None,
sinkhorn=False,
alpha=1,
df1=None,
df2=None,
args=None,
):
super().__init__(
name=name,
num_factors=num_factors,
trainable=trainable,
verbose=verbose,
num_epochs=num_epochs,
batch_size=batch_size,
num_neg=num_neg,
lr=lr,
reg=reg,
learner=learner,
early_stopping=early_stopping,
seed=seed,
use_pretrain=use_pretrain,
use_NeuMF=use_NeuMF,
pretrained_GMF=pretrained_GMF,
)

self.sinkhorn = sinkhorn
self.alpha = alpha
self.df1 = df1
self.df2 = df2
self.args = args

def fit(self, train_set, val_set=None):
"""Fit the model to observations.

Parameters
----------
train_set: :obj:`cornac.data.Dataset`, required
User-Item preference data as well as additional modalities.

val_set: :obj:`cornac.data.Dataset`, optional, default: None
User-Item preference data for model selection purposes (e.g., early stopping).

Returns
-------
self : object
"""
super().fit(train_set, val_set)

if self.trainable is False:
return self

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = device
if self.seed is not None:
torch.manual_seed(self.seed)
np.random.seed(self.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(self.seed)

from .pytorch_ncf_base import GMF_torch as GMF

self.model = GMF(
self.num_users,
self.num_items,
self.num_factors,
self.use_pretrain,
self.use_NeuMF,
self.pretrained_GMF,
).to(self.device)

criteria = nn.MSELoss(reduction="sum")
optimizer = self.learner(
self.model.parameters(),
lr=self.lr,
weight_decay=self.reg,
)

loop = trange(self.num_epochs, disable=not self.verbose)
for _ in loop:
count = 0
sum_loss = 0
for batch_id, (batch_users, batch_items, batch_ratings) in enumerate(
self.train_set.uir_iter(
self.batch_size, shuffle=True, binary=True, num_zeros=self.num_neg
)
):
batch_users = torch.from_numpy(batch_users).to(self.device)
batch_items = torch.from_numpy(batch_items).to(self.device)
batch_ratings = torch.tensor(batch_ratings, dtype=torch.float).to(
self.device
)

optimizer.zero_grad()
outputs = self.model(batch_users, batch_items)
loss = criteria(outputs, batch_ratings)
loss.backward()
optimizer.step()

count += len(batch_users)
sum_loss += loss.data.item()

if batch_id % 10 == 0:
loop.set_postfix(loss=(sum_loss / count))

if self.sinkhorn:
df1 = self.df1
df2 = self.df2
args = self.args
assert df1 is not None and df2 is not None
import geomloss

uid_df1 = df1["user_id"].unique()
uid_df2 = df2["user_id"].unique()
uidx_1 = torch.tensor([train_set.uid_map[key] for key in uid_df1]).to(
device
)
uidx_2 = torch.tensor([train_set.uid_map[key] for key in uid_df2]).to(
device
)
sinkhorn_loss = geomloss.SamplesLoss(
loss="sinkhorn",
p=1,
blur=args.epsilon,
scaling=args.scaling,
)
l_s = self.alpha * sinkhorn_loss(
self.model.u_factors(uidx_1), self.model.u_factors(uidx_2)
)
optimizer.zero_grad()
l_s.backward()
optimizer.step()

def score(self, user_idx, item_idx=None):
"""Predict the scores/ratings of a user for an item.

Parameters
----------
user_idx: int, required
The index of the user for whom to perform score prediction.

item_idx: int, optional, default: None
The index of the item for which to perform score prediction.
If None, scores for all known items will be returned.

Returns
-------
res : A scalar or a Numpy array
Relative scores that the user gives to the item or to all known items
"""
if item_idx is None:
if self.train_set.is_unk_user(user_idx):
raise ScoreException(
"Can't make score prediction for (user_id=%d)" % user_idx
)

item_ids = torch.from_numpy(np.arange(self.train_set.num_items)).to(
self.device
)
user_ids = torch.tensor(user_idx).unsqueeze(0).to(self.device)

known_item_scores = self.model.predict(user_ids, item_ids).squeeze()
return known_item_scores.cpu().numpy()
else:
if self.train_set.is_unk_user(user_idx) or self.train_set.is_unk_item(
item_idx
):
raise ScoreException(
"Can't make score prediction for (user_id=%d, item_id=%d)"
% (user_idx, item_idx)
)

user_pred = self.model.predict(user_ids, item_ids).squeeze()
return user_pred.cpu().numpy()
Loading