Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement NGCF #529

Merged
merged 11 commits into from
Oct 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,7 @@ The recommender models supported by Cornac are listed below. Why don't you join
| | [Hybrid neural recommendation with joint deep representation learning of ratings and reviews (HRDR)](cornac/models/hrdr), [paper](https://www.sciencedirect.com/science/article/abs/pii/S0925231219313207) | [requirements.txt](cornac/models/hrdr/requirements.txt) | [hrdr_example.py](examples/hrdr_example.py)
| | [LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation](cornac/models/lightgcn), [paper](https://arxiv.org/pdf/2002.02126.pdf) | [requirements.txt](cornac/models/lightgcn/requirements.txt) | [lightgcn_example.py](examples/lightgcn_example.py)
| 2019 | [Embarrassingly Shallow Autoencoders for Sparse Data (EASEᴿ)](cornac/models/ease), [paper](https://arxiv.org/pdf/1905.03375.pdf) | N/A | [ease_movielens.py](examples/ease_movielens.py)
| | [Neural Graph Collaborative Filtering](cornac/models/ngcf), [paper](https://arxiv.org/pdf/1905.08108.pdf) | [requirements.txt](cornac/models/ngcf/requirements.txt) | [ngcf_example.py](examples/ngcf_example.py)
| 2018 | [Collaborative Context Poisson Factorization (C2PF)](cornac/models/c2pf), [paper](https://www.ijcai.org/proceedings/2018/0370.pdf) | N/A | [c2pf_exp.py](examples/c2pf_example.py)
| | [Graph Convolutional Matrix Completion (GCMC)](cornac/models/gcmc), [paper](https://www.kdd.org/kdd2018/files/deep-learning-day/DLDay18_paper_32.pdf) | [requirements.txt](cornac/models/gcmc/requirements.txt) | [gcmc_example.py](examples/gcmc_example.py)
| | [Multi-Task Explainable Recommendation (MTER)](cornac/models/mter), [paper](https://arxiv.org/pdf/1806.03568.pdf) | N/A | [mter_exp.py](examples/mter_example.py)
Expand Down
1 change: 1 addition & 0 deletions cornac/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@
from .ncf import GMF
from .ncf import MLP
from .ncf import NeuMF
from .ngcf import NGCF
from .nmf import NMF
from .online_ibpr import OnlineIBPR
from .pcrl import PCRL
Expand Down
16 changes: 16 additions & 0 deletions cornac/models/ngcf/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

from .recom_ngcf import NGCF
185 changes: 185 additions & 0 deletions cornac/models/ngcf/ngcf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
# Reference: https://github.com/dmlc/dgl/blob/master/examples/pytorch/NGCF/NGCF/model.py

import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn


USER_KEY = "user"
ITEM_KEY = "item"


def construct_graph(data_set):
"""
Generates graph given a cornac data set

Parameters
----------
data_set : cornac.data.dataset.Dataset
The data set as provided by cornac
"""
user_indices, item_indices, _ = data_set.uir_tuple

# construct graph from the train data and add self-loops
user_selfs = [i for i in range(data_set.total_users)]
item_selfs = [i for i in range(data_set.total_items)]

data_dict = {
(USER_KEY, "user_self", USER_KEY): (user_selfs, user_selfs),
(ITEM_KEY, "item_self", ITEM_KEY): (item_selfs, item_selfs),
(USER_KEY, "user_item", ITEM_KEY): (user_indices, item_indices),
(ITEM_KEY, "item_user", USER_KEY): (item_indices, user_indices),
}
num_dict = {USER_KEY: data_set.total_users, ITEM_KEY: data_set.total_items}

return dgl.heterograph(data_dict, num_nodes_dict=num_dict)


class NGCFLayer(nn.Module):
def __init__(self, in_size, out_size, norm_dict, dropout):
super(NGCFLayer, self).__init__()
self.in_size = in_size
self.out_size = out_size

# weights for different types of messages
self.W1 = nn.Linear(in_size, out_size, bias=True)
self.W2 = nn.Linear(in_size, out_size, bias=True)

# leaky relu
self.leaky_relu = nn.LeakyReLU(0.2)

# dropout layer
self.dropout = nn.Dropout(dropout)

# initialization
torch.nn.init.xavier_uniform_(self.W1.weight)
torch.nn.init.constant_(self.W1.bias, 0)
torch.nn.init.xavier_uniform_(self.W2.weight)
torch.nn.init.constant_(self.W2.bias, 0)

# norm
self.norm_dict = norm_dict

def forward(self, g, feat_dict):
funcs = {} # message and reduce functions dict
# for each type of edges, compute messages and reduce them all
for srctype, etype, dsttype in g.canonical_etypes:
if srctype == dsttype: # for self loops
messages = self.W1(feat_dict[srctype])
g.nodes[srctype].data[etype] = messages # store in ndata
funcs[(srctype, etype, dsttype)] = (
fn.copy_u(etype, "m"),
fn.sum("m", "h"),
) # define message and reduce functions
else:
src, dst = g.edges(etype=(srctype, etype, dsttype))
norm = self.norm_dict[(srctype, etype, dsttype)]
messages = norm * (
self.W1(feat_dict[srctype][src])
+ self.W2(feat_dict[srctype][src] * feat_dict[dsttype][dst])
) # compute messages
g.edges[(srctype, etype, dsttype)].data[
etype
] = messages # store in edata
funcs[(srctype, etype, dsttype)] = (
fn.copy_e(etype, "m"),
fn.sum("m", "h"),
) # define message and reduce functions

g.multi_update_all(
funcs, "sum"
) # update all, reduce by first type-wisely then across different types
feature_dict = {}
for ntype in g.ntypes:
h = self.leaky_relu(g.nodes[ntype].data["h"]) # leaky relu
h = self.dropout(h) # dropout
h = F.normalize(h, dim=1, p=2) # l2 normalize
feature_dict[ntype] = h
return feature_dict


class Model(nn.Module):
def __init__(self, g, in_size, layer_sizes, dropout_rates, lambda_reg, device=None):
super(Model, self).__init__()
self.norm_dict = dict()
self.lambda_reg = lambda_reg
self.device = device

for srctype, etype, dsttype in g.canonical_etypes:
src, dst = g.edges(etype=(srctype, etype, dsttype))
dst_degree = g.in_degrees(
dst, etype=(srctype, etype, dsttype)
).float() # obtain degrees
src_degree = g.out_degrees(src, etype=(srctype, etype, dsttype)).float()
norm = torch.pow(src_degree * dst_degree, -0.5).unsqueeze(1) # compute norm
self.norm_dict[(srctype, etype, dsttype)] = norm

self.layers = nn.ModuleList()

# sanity check, just to ensure layer sizes and dropout_rates have the same size
assert len(layer_sizes) == len(dropout_rates), "'layer_sizes' and " \
"'dropout_rates' must be of the same size"

self.layers.append(
NGCFLayer(in_size, layer_sizes[0], self.norm_dict, dropout_rates[0])
)
self.num_layers = len(layer_sizes)
for i in range(self.num_layers - 1):
self.layers.append(
NGCFLayer(
layer_sizes[i],
layer_sizes[i + 1],
self.norm_dict,
dropout_rates[i + 1],
)
)
self.initializer = nn.init.xavier_uniform_

# embeddings for different types of nodes
self.feature_dict = nn.ParameterDict(
{
ntype: nn.Parameter(
self.initializer(torch.empty(g.num_nodes(ntype), in_size))
)
for ntype in g.ntypes
}
)

def forward(self, g, users=None, pos_items=None, neg_items=None):
h_dict = {ntype: self.feature_dict[ntype] for ntype in g.ntypes}
# obtain features of each layer and concatenate them all
user_embeds = []
item_embeds = []
user_embeds.append(h_dict[USER_KEY])
item_embeds.append(h_dict[ITEM_KEY])
for layer in self.layers:
h_dict = layer(g, h_dict)
user_embeds.append(h_dict[USER_KEY])
item_embeds.append(h_dict[ITEM_KEY])
user_embd = torch.cat(user_embeds, 1)
item_embd = torch.cat(item_embeds, 1)

u_g_embeddings = user_embd if users is None else user_embd[users, :]
pos_i_g_embeddings = item_embd if pos_items is None else item_embd[pos_items, :]
neg_i_g_embeddings = item_embd if neg_items is None else item_embd[neg_items, :]

return u_g_embeddings, pos_i_g_embeddings, neg_i_g_embeddings

def loss_fn(self, users, pos_items, neg_items):
pos_scores = (users * pos_items).sum(1)
neg_scores = (users * neg_items).sum(1)

bpr_loss = F.softplus(neg_scores - pos_scores).mean()
reg_loss = (
(1 / 2)
* (
torch.norm(users) ** 2
+ torch.norm(pos_items) ** 2
+ torch.norm(neg_items) ** 2
)
/ len(users)
)

return bpr_loss + self.lambda_reg * reg_loss, bpr_loss, reg_loss
Loading