-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
1,440 additions
and
0 deletions.
There are no files selected for viewing
305 changes: 305 additions & 0 deletions
305
modules/image/text_recognition/ppocrv3_det_ch/module.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,305 @@ | ||
# -*- coding:utf-8 -*- | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import argparse | ||
import ast | ||
import base64 | ||
import math | ||
import os | ||
import time | ||
|
||
import cv2 | ||
import numpy as np | ||
import paddle.fluid as fluid | ||
import paddle.inference as paddle_infer | ||
from paddle.fluid.core import AnalysisConfig | ||
from paddle.fluid.core import create_paddle_predictor | ||
from paddle.fluid.core import PaddleTensor | ||
from PIL import Image | ||
|
||
import paddlehub as hub | ||
from paddlehub.common.logger import logger | ||
from paddlehub.module.module import moduleinfo | ||
from paddlehub.module.module import runnable | ||
from paddlehub.module.module import serving | ||
|
||
|
||
def base64_to_cv2(b64str): | ||
data = base64.b64decode(b64str.encode('utf8')) | ||
data = np.fromstring(data, np.uint8) | ||
data = cv2.imdecode(data, cv2.IMREAD_COLOR) | ||
return data | ||
|
||
|
||
@moduleinfo( | ||
name="ppocrv3_det_ch", | ||
version="1.0.0", | ||
summary= | ||
"The module aims to detect chinese text position in the image, which is based on differentiable_binarization algorithm.", | ||
author="paddle-dev", | ||
author_email="[email protected]", | ||
type="cv/text_recognition") | ||
class ChineseTextDetectionDB(hub.Module): | ||
|
||
def _initialize(self, enable_mkldnn=False): | ||
""" | ||
initialize with the necessary elements | ||
""" | ||
self.pretrained_model_path = os.path.join(self.directory, 'inference_model', 'ppocrv3_det') | ||
self.enable_mkldnn = enable_mkldnn | ||
|
||
self._set_config() | ||
|
||
def check_requirements(self): | ||
try: | ||
import shapely, pyclipper | ||
except: | ||
raise ImportError( | ||
'This module requires the shapely, pyclipper tools. The running environment does not meet the requirements. Please install the two packages.' | ||
) | ||
|
||
def _set_config(self): | ||
""" | ||
predictor config setting | ||
""" | ||
model_file_path = self.pretrained_model_path + '.pdmodel' | ||
params_file_path = self.pretrained_model_path + '.pdiparams' | ||
|
||
config = paddle_infer.Config(model_file_path, params_file_path) | ||
try: | ||
_places = os.environ["CUDA_VISIBLE_DEVICES"] | ||
int(_places[0]) | ||
use_gpu = True | ||
except: | ||
use_gpu = False | ||
|
||
if use_gpu: | ||
config.enable_use_gpu(8000, 0) | ||
else: | ||
config.disable_gpu() | ||
config.set_cpu_math_library_num_threads(6) | ||
if self.enable_mkldnn: | ||
# cache 10 different shapes for mkldnn to avoid memory leak | ||
config.set_mkldnn_cache_capacity(10) | ||
config.enable_mkldnn() | ||
|
||
config.disable_glog_info() | ||
|
||
# use zero copy | ||
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") | ||
config.switch_use_feed_fetch_ops(False) | ||
self.predictor = paddle_infer.create_predictor(config) | ||
input_names = self.predictor.get_input_names() | ||
self.input_tensor = self.predictor.get_input_handle(input_names[0]) | ||
output_names = self.predictor.get_output_names() | ||
self.output_tensors = [] | ||
for output_name in output_names: | ||
output_tensor = self.predictor.get_output_handle(output_name) | ||
self.output_tensors.append(output_tensor) | ||
|
||
def read_images(self, paths=[]): | ||
images = [] | ||
for img_path in paths: | ||
assert os.path.isfile(img_path), "The {} isn't a valid file.".format(img_path) | ||
img = cv2.imread(img_path) | ||
if img is None: | ||
logger.info("error in loading image:{}".format(img_path)) | ||
continue | ||
images.append(img) | ||
return images | ||
|
||
def order_points_clockwise(self, pts): | ||
rect = np.zeros((4, 2), dtype="float32") | ||
s = pts.sum(axis=1) | ||
rect[0] = pts[np.argmin(s)] | ||
rect[2] = pts[np.argmax(s)] | ||
diff = np.diff(pts, axis=1) | ||
rect[1] = pts[np.argmin(diff)] | ||
rect[3] = pts[np.argmax(diff)] | ||
return rect | ||
|
||
def clip_det_res(self, points, img_height, img_width): | ||
for pno in range(points.shape[0]): | ||
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) | ||
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) | ||
return points | ||
|
||
def filter_tag_det_res(self, dt_boxes, image_shape): | ||
img_height, img_width = image_shape[0:2] | ||
dt_boxes_new = [] | ||
for box in dt_boxes: | ||
box = self.order_points_clockwise(box) | ||
box = self.clip_det_res(box, img_height, img_width) | ||
rect_width = int(np.linalg.norm(box[0] - box[1])) | ||
rect_height = int(np.linalg.norm(box[0] - box[3])) | ||
if rect_width <= 3 or rect_height <= 3: | ||
continue | ||
dt_boxes_new.append(box) | ||
dt_boxes = np.array(dt_boxes_new) | ||
return dt_boxes | ||
|
||
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): | ||
img_height, img_width = image_shape[0:2] | ||
dt_boxes_new = [] | ||
for box in dt_boxes: | ||
box = self.clip_det_res(box, img_height, img_width) | ||
dt_boxes_new.append(box) | ||
dt_boxes = np.array(dt_boxes_new) | ||
return dt_boxes | ||
|
||
def detect_text(self, | ||
images=[], | ||
paths=[], | ||
use_gpu=False, | ||
output_dir='detection_result', | ||
visualization=False, | ||
box_thresh=0.5): | ||
""" | ||
Get the text box in the predicted images. | ||
Args: | ||
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths | ||
paths (list[str]): The paths of images. If paths not images | ||
use_gpu (bool): Whether to use gpu. Default false. | ||
output_dir (str): The directory to store output images. | ||
visualization (bool): Whether to save image or not. | ||
box_thresh(float): the threshold of the detected text box's confidence | ||
Returns: | ||
res (list): The result of text detection box and save path of images. | ||
""" | ||
self.check_requirements() | ||
|
||
from .processor import DBProcessTest, DBPostProcess, draw_boxes, get_image_ext | ||
|
||
if use_gpu: | ||
try: | ||
_places = os.environ["CUDA_VISIBLE_DEVICES"] | ||
int(_places[0]) | ||
except: | ||
raise RuntimeError( | ||
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id." | ||
) | ||
|
||
if images != [] and isinstance(images, list) and paths == []: | ||
predicted_data = images | ||
elif images == [] and isinstance(paths, list) and paths != []: | ||
predicted_data = self.read_images(paths) | ||
else: | ||
raise TypeError("The input data is inconsistent with expectations.") | ||
|
||
assert predicted_data != [], "There is not any image to be predicted. Please check the input data." | ||
|
||
preprocessor = DBProcessTest(params={'max_side_len': 960}) | ||
postprocessor = DBPostProcess(params={ | ||
'thresh': 0.3, | ||
'box_thresh': 0.6, | ||
'max_candidates': 1000, | ||
'unclip_ratio': 1.5 | ||
}) | ||
|
||
all_imgs = [] | ||
all_ratios = [] | ||
all_results = [] | ||
for original_image in predicted_data: | ||
ori_im = original_image.copy() | ||
im, ratio_list = preprocessor(original_image) | ||
print('after preprocess int det, shape{}'.format(im.shape)) | ||
res = {'save_path': ''} | ||
if im is None: | ||
res['data'] = [] | ||
|
||
else: | ||
im = im.copy() | ||
self.input_tensor.copy_from_cpu(im) | ||
self.predictor.run() | ||
|
||
outputs = [] | ||
for output_tensor in self.output_tensors: | ||
output = output_tensor.copy_to_cpu() | ||
outputs.append(output) | ||
|
||
outs_dict = {} | ||
outs_dict['maps'] = outputs[0] | ||
|
||
# data_out = self.output_tensors[0].copy_to_cpu() | ||
print('Outputs[0] in det, shape: {}'.format(outputs[0].shape)) | ||
dt_boxes_list = postprocessor(outs_dict, [ratio_list]) | ||
dt_boxes = dt_boxes_list[0] | ||
print('after postprocess int det, shape{}'.format(dt_boxes.shape)) | ||
boxes = self.filter_tag_det_res(dt_boxes_list[0], original_image.shape) | ||
print('after fitler tag int det, shape{}'.format(boxes.shape)) | ||
res['data'] = boxes.astype(np.int).tolist() | ||
print('boxes: {}'.format(boxes)) | ||
all_imgs.append(im) | ||
all_ratios.append(ratio_list) | ||
if visualization: | ||
img = Image.fromarray(cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)) | ||
draw_img = draw_boxes(img, boxes) | ||
draw_img = np.array(draw_img) | ||
if not os.path.exists(output_dir): | ||
os.makedirs(output_dir) | ||
ext = get_image_ext(original_image) | ||
saved_name = 'ndarray_{}{}'.format(time.time(), ext) | ||
cv2.imwrite(os.path.join(output_dir, saved_name), draw_img[:, :, ::-1]) | ||
res['save_path'] = os.path.join(output_dir, saved_name) | ||
|
||
all_results.append(res) | ||
|
||
return all_results | ||
|
||
@serving | ||
def serving_method(self, images, **kwargs): | ||
""" | ||
Run as a service. | ||
""" | ||
images_decode = [base64_to_cv2(image) for image in images] | ||
results = self.detect_text(images=images_decode, **kwargs) | ||
return results | ||
|
||
@runnable | ||
def run_cmd(self, argvs): | ||
""" | ||
Run as a command | ||
""" | ||
self.parser = argparse.ArgumentParser(description="Run the %s module." % self.name, | ||
prog='hub run %s' % self.name, | ||
usage='%(prog)s', | ||
add_help=True) | ||
|
||
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required") | ||
self.arg_config_group = self.parser.add_argument_group( | ||
title="Config options", description="Run configuration for controlling module behavior, not required.") | ||
|
||
self.add_module_config_arg() | ||
self.add_module_input_arg() | ||
|
||
args = self.parser.parse_args(argvs) | ||
results = self.detect_text(paths=[args.input_path], | ||
use_gpu=args.use_gpu, | ||
output_dir=args.output_dir, | ||
visualization=args.visualization) | ||
return results | ||
|
||
def add_module_config_arg(self): | ||
""" | ||
Add the command config options | ||
""" | ||
self.arg_config_group.add_argument('--use_gpu', | ||
type=ast.literal_eval, | ||
default=False, | ||
help="whether use GPU or not") | ||
self.arg_config_group.add_argument('--output_dir', | ||
type=str, | ||
default='detection_result', | ||
help="The directory to save output images.") | ||
self.arg_config_group.add_argument('--visualization', | ||
type=ast.literal_eval, | ||
default=False, | ||
help="whether to save output as images.") | ||
|
||
def add_module_input_arg(self): | ||
""" | ||
Add the command input options | ||
""" | ||
self.arg_input_group.add_argument('--input_path', type=str, default=None, help="diretory to image") |
Oops, something went wrong.