Skip to content

Latest commit

 

History

History

text_classification

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

PaddleHub Transformer模型fine-tune文本分类(动态图)

在2017年之前,工业界和学术界对NLP文本处理依赖于序列模型Recurrent Neural Network (RNN).

近年来随着深度学习的发展,模型参数数量飞速增长,为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集成本过高,非常困难,特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。最近的研究表明,基于大规模未标注语料库的预训练模型(Pretrained Models, PTM) 能够习得通用的语言表示,将预训练模型Fine-tune到下游任务,能够获得出色的表现。另外,预训练模型能够避免从零开始训练模型。

本示例将展示如何使用PaddleHub Transformer模型(如 ERNIE、BERT、RoBERTa等模型)Module 以动态图方式fine-tune并完成预测任务。

如何开始Fine-tune

我们以中文情感分类公开数据集ChnSentiCorp为示例数据集,可以运行下面的命令,在训练集(train.tsv)上进行模型训练,并在开发集(dev.tsv)验证。通过如下命令,即可启动训练。

# 设置使用的GPU卡号
export CUDA_VISIBLE_DEVICES=0
python train.py

代码步骤

使用PaddleHub Fine-tune API进行Fine-tune可以分为4个步骤。

Step1: 选择模型

import paddlehub as hub

model = hub.Module(name='ernie_tiny', version='2.0.1', task='seq-cls', num_classes=2)

其中,参数:

  • name:模型名称,可以选择ernieernie_tinybert-base-casedbert-base-chinese, roberta-wwm-extroberta-wwm-ext-large等。
  • version:module版本号
  • task:fine-tune任务。此处为seq-cls,表示文本分类任务。
  • num_classes:表示当前文本分类任务的类别数,根据具体使用的数据集确定,默认为2。

PaddleHub还提供BERT等模型可供选择, 当前支持文本分类任务的模型对应的加载示例如下:

模型名 PaddleHub Module
ERNIE, Chinese hub.Module(name='ernie')
ERNIE tiny, Chinese hub.Module(name='ernie_tiny')
ERNIE 2.0 Base, English hub.Module(name='ernie_v2_eng_base')
ERNIE 2.0 Large, English hub.Module(name='ernie_v2_eng_large')
BERT-Base, English Cased hub.Module(name='bert-base-cased')
BERT-Base, English Uncased hub.Module(name='bert-base-uncased')
BERT-Large, English Cased hub.Module(name='bert-large-cased')
BERT-Large, English Uncased hub.Module(name='bert-large-uncased')
BERT-Base, Multilingual Cased hub.Module(nane='bert-base-multilingual-cased')
BERT-Base, Multilingual Uncased hub.Module(nane='bert-base-multilingual-uncased')
BERT-Base, Chinese hub.Module(name='bert-base-chinese')
BERT-wwm, Chinese hub.Module(name='chinese-bert-wwm')
BERT-wwm-ext, Chinese hub.Module(name='chinese-bert-wwm-ext')
RoBERTa-wwm-ext, Chinese hub.Module(name='roberta-wwm-ext')
RoBERTa-wwm-ext-large, Chinese hub.Module(name='roberta-wwm-ext-large')
RBT3, Chinese hub.Module(name='rbt3')
RBTL3, Chinese hub.Module(name='rbtl3')
ELECTRA-Small, English hub.Module(name='electra-small')
ELECTRA-Base, English hub.Module(name='electra-base')
ELECTRA-Large, English hub.Module(name='electra-large')
ELECTRA-Base, Chinese hub.Module(name='chinese-electra-base')
ELECTRA-Small, Chinese hub.Module(name='chinese-electra-small')

通过以上的一行代码,model初始化为一个适用于文本分类任务的模型,为ERNIE Tiny的预训练模型后拼接上一个全连接网络(Full Connected)。

以上图片来自于:https://arxiv.org/pdf/1810.04805.pdf

Step2: 下载并加载数据集

train_dataset = hub.datasets.ChnSentiCorp(
    tokenizer=model.get_tokenizer(), max_seq_len=128, mode='train')
dev_dataset = hub.datasets.ChnSentiCorp(
    tokenizer=model.get_tokenizer(), max_seq_len=128, mode='dev')
test_dataset = hub.datasets.ChnSentiCorp(
    tokenizer=model.get_tokenizer(), max_seq_len=128, mode='test')
  • tokenizer:表示该module所需用到的tokenizer,其将对输入文本完成切词,并转化成module运行所需模型输入格式。
  • mode:选择数据模式,可选项有 train, test, dev, 默认为train
  • max_seq_len:ERNIE/BERT模型使用的最大序列长度,若出现显存不足,请适当调低这一参数。

预训练模型ERNIE对中文数据的处理是以字为单位,tokenizer作用为将原始输入文本转化成模型model可以接受的输入数据形式。 PaddleHub 2.0中的各种预训练模型已经内置了相应的tokenizer,可以通过model.get_tokenizer方法获取。

Step3: 选择优化策略和运行配置

optimizer = paddle.optimizer.Adam(learning_rate=5e-5, parameters=model.parameters())
trainer = hub.Trainer(model, optimizer, checkpoint_dir='test_ernie_text_cls', use_gpu=True)

trainer.train(train_dataset, epochs=3, batch_size=32, eval_dataset=dev_dataset)

# 在测试集上评估当前训练模型
trainer.evaluate(test_dataset, batch_size=32)

优化策略

Paddle2.0-rc提供了多种优化器选择,如SGD, Adam, Adamax等,详细参见策略

其中Adam:

  • learning_rate: 全局学习率。默认为1e-3;
  • parameters: 待优化模型参数。

运行配置

Trainer 主要控制Fine-tune的训练,包含以下可控制的参数:

  • model: 被优化模型;
  • optimizer: 优化器选择;
  • use_vdl: 是否使用vdl可视化训练过程;
  • checkpoint_dir: 保存模型参数的地址;
  • compare_metrics: 保存最优模型的衡量指标;

trainer.train 主要控制具体的训练过程,包含以下可控制的参数:

  • train_dataset: 训练时所用的数据集;
  • epochs: 训练轮数;
  • batch_size: 训练的批大小,如果使用GPU,请根据实际情况调整batch_size;
  • num_workers: works的数量,默认为0;
  • eval_dataset: 验证集;
  • log_interval: 打印日志的间隔, 单位为执行批训练的次数。
  • save_interval: 保存模型的间隔频次,单位为执行训练的轮数。

模型预测

当完成Fine-tune后,Fine-tune过程在验证集上表现最优的模型会被保存在${CHECKPOINT_DIR}/best_model目录下,其中${CHECKPOINT_DIR}目录为Fine-tune时所选择的保存checkpoint的目录。

我们以以下数据为待预测数据,使用该模型来进行预测

这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般
怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片
作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。
import paddlehub as hub

data = [
    ['这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般'],
    ['怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片'],
    ['作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。'],
]
label_map = {0: 'negative', 1: 'positive'}

model = hub.Module(
    name='ernie_tiny',
    version='2.0.1',
    task='seq-cls',
    load_checkpoint='./test_ernie_text_cls/best_model/model.pdparams',
    label_map=label_map)
results, probs = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False, return_prob=True)
for idx, text in enumerate(data):
    print('Data: {} \t Lable: {} \t Prob: {}'.format(text[0], results[idx], probs[idx]))

参数配置正确后,请执行脚本python predict.py, 加载模型具体可参见加载