-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtrain.py
53 lines (46 loc) · 2.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddlehub as hub
from paddlehub.datasets import ChnSentiCorp
import ast
import argparse
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.")
parser.add_argument(
"--use_gpu",
type=ast.literal_eval,
default=True,
help="Whether use GPU for fine-tuning, input should be True or False")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
parser.add_argument("--max_seq_len", type=int, default=128, help="Number of words of the longest seqence.")
parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.")
parser.add_argument("--checkpoint_dir", type=str, default='./checkpoint', help="Directory to model checkpoint")
parser.add_argument("--save_interval", type=int, default=1, help="Save checkpoint every n epoch.")
args = parser.parse_args()
if __name__ == '__main__':
model = hub.Module(name='ernie_tiny', version='2.0.1', task='seq-cls')
train_dataset = ChnSentiCorp(tokenizer=model.get_tokenizer(), max_seq_len=args.max_seq_len, mode='train')
dev_dataset = ChnSentiCorp(tokenizer=model.get_tokenizer(), max_seq_len=args.max_seq_len, mode='dev')
test_dataset = ChnSentiCorp(tokenizer=model.get_tokenizer(), max_seq_len=args.max_seq_len, mode='test')
optimizer = paddle.optimizer.AdamW(learning_rate=args.learning_rate, parameters=model.parameters())
trainer = hub.Trainer(model, optimizer, checkpoint_dir=args.checkpoint_dir, use_gpu=args.use_gpu)
trainer.train(
train_dataset,
epochs=args.num_epoch,
batch_size=args.batch_size,
eval_dataset=dev_dataset,
save_interval=args.save_interval,
)
trainer.evaluate(test_dataset, batch_size=args.batch_size)