Skip to content

Commit

Permalink
Changes suggested by Arun Sagotra
Browse files Browse the repository at this point in the history
Keras model library mixed,
some wrong paths fixed
  • Loading branch information
fipeop authored May 24, 2019
1 parent 073db31 commit e7de04b
Show file tree
Hide file tree
Showing 3 changed files with 580 additions and 579 deletions.
278 changes: 139 additions & 139 deletions autoXRD.py
Original file line number Diff line number Diff line change
@@ -1,140 +1,140 @@
"""
AUTO-XRD
filneame: autoXRD.py version: 1.0
Series of functions for XRD spectra pre-processing, normalization
and data augmentation
@authors: Felipe Oviedo and Danny Zekun Ren
MIT Photovoltaics Laboratory / Singapore and MIT Alliance for Research and Tehcnology
All code is under Apache 2.0 license, please cite any use of the code as explained
in the README.rst file, in the GitHub repository.
"""

#################################################################
#Libraries and dependencies
################################################################

import pandas as pd
import numpy as np
from scipy.signal import savgol_filter
from scipy.signal import find_peaks_cwt

#################################################################
# Functions
#################################################################

# Data normalization from 0 to 1 for double column dataframe, returns single column array
def normdata(data):

(len1,w1) = np.shape(data)
ndata = np.zeros([len1,w1//2])
for i in range(w1//2):
ndata[:,i]=(data[:,2*i+1]-min(data[:,2*i+1]))/(max(data[:,2*i+1])-min(data[:,2*i+1]))
return ndata

# Data normalization from 0 to 1 for single column dataframe
def normdatasingle(data):

(len1,w1) = np.shape(data)
ndata = np.zeros([len1,w1])
for i in range(w1):
ndata[:,i]=(data[:,i]-min(data[:,i]))/(max(data[:,i])-min(data[:,i]))
return ndata

# Data augmendatation for simulated XRD patterns
def augdata(data,num,par1,minn,maxn):

(len1,w1) = np.shape(data)
augd =np.zeros([len1,num])
naugd=np.zeros([len1,num])
newaugd=np.zeros([len1,num])
crop_augd = np.zeros([maxn-minn,num])
pard = []

for i in range(num):
rnd = np.random.randint(0,w1)
# create the first filter for peak elimination
dumb= np.repeat(np.random.choice([0,1,1],300),len1//300)
dumb1= np.append(dumb,np.zeros([len1-len(dumb),]))
# create the second filter for peak scaling
dumbrnd= np.repeat(np.random.rand(100,),len1//100)
dumbrnd1=np.append(dumbrnd,np.zeros([len1-len(dumbrnd),]))
#peak eleminsation and scaling
augd[:,i] = np.multiply((data[:,rnd]),dumbrnd1)
augd[:,i] = np.multiply(augd[:,i],dumb1)
#nomrlization
naugd[:,i] = (augd[:,i]-min(augd[:,i]))/(max(augd[:,i])-min(augd[:,i])+1e-9)
pard.append (par1[2*rnd])
#adding shift
cut = np.random.randint(-20*1,20)
#XRD spectrum shift to left
if cut>=0:
newaugd[:,i] = np.append(naugd[cut:,i],np.zeros([cut,]))
#XRD spectrum shift to right
else:
newaugd[:,i] = np.append(naugd[0:len1+cut,i],np.zeros([cut*-1,]))

crop_augd[:,i] = newaugd[minn:maxn,i]
#
return newaugd, pard,crop_augd
# Data augmendatation for experimental XRD pattern
def exp_augdata(data,num,label):

(len1,w1) = np.shape(data)
augd =np.zeros([len1,num])
naugd=np.zeros([len1,num])
newaugd=np.zeros([len1,num])
par=np.zeros([num,])

for i in range(num):
rnd = np.random.randint(0,w1)

# create the first filter for peak elimination
dumb= np.repeat(np.random.choice([0,1,1],300),len1//300)
dumb1= np.append(dumb,np.zeros([len1-len(dumb),]))
# create the second filter for peak scaling
dumbrnd= np.repeat(np.random.rand(200,),len1//200)
dumbrnd1=np.append(dumbrnd,np.zeros([len1-len(dumbrnd),]))
#peak eleminsation and scaling
augd[:,i] = np.multiply((data[:,rnd]),dumbrnd1)
augd[:,i] = np.multiply(augd[:,i],dumb1)
#normalization
naugd[:,i] = (augd[:,i]-min(augd[:,i]))/(max(augd[:,i])-min(augd[:,i])+1e-9)
par[i,] =label[rnd,]
#adding shift
cut = np.random.randint(-20*1,20)
#XRD spectrum shift to left
if cut>=0:
newaugd[:,i] = np.append(naugd[cut:,i],np.zeros([cut,]))
#XRD spectrum shift to right
else:
newaugd[:,i] = np.append(naugd[0:len1+cut,i],np.zeros([cut*-1,]))

return newaugd, par

# Extracting experimental data
def exp_data_processing (data,minn,maxn,window):

(len1,w1) = np.shape(data)
nexp1 =np.zeros([maxn-minn,w1])
for i in range(w1):
#savgol_filter to smooth the data
new1 = savgol_filter(data[minn:maxn,i], 31, 3)
#peak finding
zf= find_peaks_cwt(new1, np.arange(10,15), noise_perc=0.01)
#background substraction
for j in range(len(zf)-1):
zf_start= np.maximum(0,zf[j+1]-window//2)
zf_end = np.minimum(zf[j+1]+window//2,maxn)
peak = new1[zf_start:zf_end]

##abritaryly remove 1/4 data
npeak = np.maximum(0,peak-max(np.partition(peak,window//5 )[0:window//5]))
nexp1[zf_start:zf_end,i]= npeak
return nexp1

"""
AUTO-XRD
filneame: autoXRD.py version: 1.0
Series of functions for XRD spectra pre-processing, normalization
and data augmentation
@authors: Felipe Oviedo and Danny Zekun Ren
MIT Photovoltaics Laboratory / Singapore and MIT Alliance for Research and Tehcnology
All code is under Apache 2.0 license, please cite any use of the code as explained
in the README.rst file, in the GitHub repository.
"""

#################################################################
#Libraries and dependencies
################################################################

import pandas as pd
import numpy as np
from scipy.signal import savgol_filter
from scipy.signal import find_peaks_cwt

#################################################################
# Functions
#################################################################

# Data normalization from 0 to 1 for double column dataframe, returns single column array
def normdata(data):

(len1,w1) = np.shape(data)
ndata = np.zeros([len1,w1//2])
for i in range(w1//2):
ndata[:,i]=(data[:,2*i+1]-min(data[:,2*i+1]))/(max(data[:,2*i+1])-min(data[:,2*i+1]))
return ndata

# Data normalization from 0 to 1 for single column dataframe
def normdatasingle(data):

(len1,w1) = np.shape(data)
ndata = np.zeros([len1,w1])
for i in range(w1):
ndata[:,i]=(data[:,i]-min(data[:,i]))/(max(data[:,i])-min(data[:,i]))
return ndata

# Data augmendatation for simulated XRD patterns
def augdata(data,num,par1,minn,maxn):

(len1,w1) = np.shape(data)
augd =np.zeros([len1,num])
naugd=np.zeros([len1,num])
newaugd=np.zeros([len1,num])
crop_augd = np.zeros([maxn-minn,num])
pard = []

for i in range(num):
rnd = np.random.randint(0,w1)
# create the first filter for peak elimination
dumb= np.repeat(np.random.choice([0,1,1],300),len1//300)
dumb1= np.append(dumb,np.zeros([len1-len(dumb),]))
# create the second filter for peak scaling
dumbrnd= np.repeat(np.random.rand(100,),len1//100)
dumbrnd1=np.append(dumbrnd,np.zeros([len1-len(dumbrnd),]))
#peak eleminsation and scaling
augd[:,i] = np.multiply((data[:,rnd]),dumbrnd1)
augd[:,i] = np.multiply(augd[:,i],dumb1)
#nomrlization
naugd[:,i] = (augd[:,i]-min(augd[:,i]))/(max(augd[:,i])-min(augd[:,i])+1e-9)
pard.append (par1[2*rnd])
#adding shift
cut = np.random.randint(-20*1,20)
#XRD spectrum shift to left
if cut>=0:
newaugd[:,i] = np.append(naugd[cut:,i],np.zeros([cut,]))
#XRD spectrum shift to right
else:
newaugd[:,i] = np.append(naugd[0:len1+cut,i],np.zeros([cut*-1,]))

crop_augd[:,i] = newaugd[minn:maxn,i]
#
return newaugd, pard,crop_augd
# Data augmendatation for experimental XRD pattern
def exp_augdata(data,num,label):

(len1,w1) = np.shape(data)
augd =np.zeros([len1,num])
naugd=np.zeros([len1,num])
newaugd=np.zeros([len1,num])
par=np.zeros([num,])

for i in range(num):
rnd = np.random.randint(0,w1)

# create the first filter for peak elimination
dumb= np.repeat(np.random.choice([0,1,1],300),len1//300)
dumb1= np.append(dumb,np.zeros([len1-len(dumb),]))
# create the second filter for peak scaling
dumbrnd= np.repeat(np.random.rand(200,),len1//200)
dumbrnd1=np.append(dumbrnd,np.zeros([len1-len(dumbrnd),]))
#peak eleminsation and scaling
augd[:,i] = np.multiply((data[:,rnd]),dumbrnd1)
augd[:,i] = np.multiply(augd[:,i],dumb1)
#normalization
naugd[:,i] = (augd[:,i]-min(augd[:,i]))/(max(augd[:,i])-min(augd[:,i])+1e-9)
par[i,] =label[rnd,]
#adding shift
cut = np.random.randint(-20*1,20)
#XRD spectrum shift to left
if cut>=0:
newaugd[:,i] = np.append(naugd[cut:,i],np.zeros([cut,]))
#XRD spectrum shift to right
else:
newaugd[:,i] = np.append(naugd[0:len1+cut,i],np.zeros([cut*-1,]))

return newaugd, par

# Extracting experimental data
def exp_data_processing (data,minn,maxn,window):

(len1,w1) = np.shape(data)
nexp1 =np.zeros([maxn-minn,w1])
for i in range(w1):
#savgol_filter to smooth the data
new1 = savgol_filter(data[minn:maxn,i], 31, 3)
#peak finding
zf= find_peaks_cwt(new1, np.arange(10,15), noise_perc=0.01)
#background substraction
for j in range(len(zf)-1):
zf_start= np.maximum(0,zf[j+1]-window//2)
zf_end = np.minimum(zf[j+1]+window//2,maxn)
peak = new1[zf_start:zf_end]

##abritaryly remove 1/4 data
npeak = np.maximum(0,peak-max(np.partition(peak,window//5 )[0:window//5]))
nexp1[zf_start:zf_end,i]= npeak
return nexp1

##################################################################
Loading

0 comments on commit e7de04b

Please sign in to comment.