Skip to content

Commit

Permalink
Merge pull request #232 from Nixtla/np_torch_losses_unittests
Browse files Browse the repository at this point in the history
Added unit tests for numpy and pytorch losses
  • Loading branch information
AzulGarza authored Apr 21, 2022
2 parents e39dfbb + 5d78c58 commit b9e4063
Show file tree
Hide file tree
Showing 6 changed files with 312 additions and 180 deletions.
54 changes: 0 additions & 54 deletions docs/data__tsdataset.html
Original file line number Diff line number Diff line change
Expand Up @@ -731,33 +731,6 @@ <h3 id="Example-and-test-for-datasets-with-two-time-series">Example and test for
</div>
</div>

<div class="output_wrapper">
<div class="output">

<div class="output_area">



<div class="output_text output_subarea output_execute_result">
<pre>[&lt;matplotlib.lines.Line2D at 0x7fb7fd6d1ad0&gt;]</pre>
</div>

</div>

<div class="output_area">



<div class="output_png output_subarea ">
<img src=""
>
</div>

</div>

</div>
</div>

</div>
{% endraw %}

Expand All @@ -777,33 +750,6 @@ <h3 id="Example-and-test-for-datasets-with-two-time-series">Example and test for
</div>
</div>

<div class="output_wrapper">
<div class="output">

<div class="output_area">



<div class="output_text output_subarea output_execute_result">
<pre>[&lt;matplotlib.lines.Line2D at 0x7fb7fbc96990&gt;]</pre>
</div>

</div>

<div class="output_area">



<div class="output_png output_subarea ">
<img src=""
>
</div>

</div>

</div>
</div>

</div>
{% endraw %}

Expand Down
2 changes: 1 addition & 1 deletion docs/data_datasets__epf.html
Original file line number Diff line number Diff line change
Expand Up @@ -507,7 +507,7 @@ <h2 id="Load-all-groups">Load all groups<a class="anchor-link" href="#Load-all-g

<span class="n">x2_plot</span><span class="p">[</span><span class="o">-</span><span class="mi">728</span><span class="o">*</span><span class="mi">24</span><span class="o">-</span><span class="mi">60</span><span class="p">:</span><span class="o">-</span><span class="mi">728</span><span class="o">*</span><span class="mi">24</span><span class="o">+</span><span class="mi">60</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">]</span> <span class="o">*</span> <span class="mi">60</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1"># mini hack</span>
<span class="n">axs</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x_plot</span><span class="p">,</span> <span class="n">x2_plot</span><span class="o">/</span><span class="mi">1000</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;#628793&#39;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mf">0.37</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.8</span><span class="p">)</span>
<span class="n">axs</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">x_plot</span><span class="p">[</span><span class="o">-</span><span class="mi">728</span><span class="o">*</span><span class="mi">24</span><span class="p">],</span><span class="o">-</span><span class="mf">.2</span><span class="p">,</span><span class="mf">5.2</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">)),</span>
<span class="n">axs</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">x_plot</span><span class="p">[</span><span class="o">-</span><span class="mi">728</span><span class="o">*</span><span class="mi">24</span><span class="p">],</span><span class="o">-.</span><span class="mi">2</span><span class="p">,</span><span class="mf">5.2</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">)),</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mf">1.9</span><span class="p">)</span>
<span class="n">axs</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">tick_params</span><span class="p">(</span><span class="n">labelsize</span><span class="o">=</span><span class="n">FONTSIZE</span><span class="o">-</span><span class="mi">2</span><span class="p">)</span>
<span class="n">axs</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="n">x_axis_str</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="n">FONTSIZE</span><span class="p">)</span>
Expand Down
2 changes: 1 addition & 1 deletion docs/data_datasets__gefcom2012.html
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="o">%%html</span>
<span class="p">&lt;</span><span class="nt">style</span><span class="p">&gt;</span><span class="w"> </span><span class="nt">table</span><span class="w"> </span><span class="p">{</span><span class="k">float</span><span class="p">:</span><span class="kc">left</span><span class="p">}</span><span class="w"> </span><span class="p">&lt;/</span><span class="nt">style</span><span class="p">&gt;</span>
<span class="p">&lt;</span><span class="nt">style</span><span class="p">&gt;</span> <span class="nt">table</span> <span class="p">{</span><span class="k">float</span><span class="p">:</span><span class="kc">left</span><span class="p">}</span> <span class="p">&lt;/</span><span class="nt">style</span><span class="p">&gt;</span>
</pre></div>

</div>
Expand Down
Loading

0 comments on commit b9e4063

Please sign in to comment.