-
Notifications
You must be signed in to change notification settings - Fork 185
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add GNN encoder and xgb outputs for finance end-to-end example (#2970)
* Readme notebook polish and cleanup * Reorganize folder structure and initial gnn * Complete the graph generate step with edgemap output * Format fix * Format fix * Add graph construction and training notebooks * Add full gnn functionality * Update wording for readme --------- Co-authored-by: Chester Chen <[email protected]>
- Loading branch information
1 parent
d2d1f96
commit 595acb2
Showing
30 changed files
with
2,103 additions
and
1,961 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
1,106 changes: 0 additions & 1,106 deletions
1,106
examples/advanced/finance-end-to-end/feature_enrichment.ipynb
This file was deleted.
Oops, something went wrong.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file not shown.
Binary file not shown.
319 changes: 319 additions & 0 deletions
319
examples/advanced/finance-end-to-end/notebooks/feature_enrichment.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,319 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "e6d10159-9c02-4bdd-ad6a-f9b7e19ac575", | ||
"metadata": {}, | ||
"source": [ | ||
"## Feature Enrichment\n", | ||
"\n", | ||
"### Historical data enrichment\n", | ||
"\n", | ||
"Pick one client (Site, aka sender_BIC) to do the enrichment as every site will be the same process" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7130bd7a-bda0-4592-818f-bd65c505baa3", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"site_input_dir = \"/tmp/dataset/horizontal_credit_fraud_data/\"\n", | ||
"site_name = \"ZHSZUS33_Bank_1\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9375ffaa-1143-43f5-b1a3-3ef45918e4bf", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import random\n", | ||
"import string\n", | ||
"\n", | ||
"import pandas as pd\n", | ||
"history_file_name = os.path.join(site_input_dir, site_name,\"history.csv\" )\n", | ||
"df_history = pd.read_csv(history_file_name)\n", | ||
"df_history" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3fe8e513-f041-4165-88b1-3b21607ca734", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"history_summary = df_history.groupby('Currency').agg(\n", | ||
" hist_trans_volume=('UETR', 'count'),\n", | ||
" hist_total_amount=('Amount', 'sum'),\n", | ||
" hist_average_amount=('Amount', 'mean')\n", | ||
").reset_index()\n", | ||
"\n", | ||
"history_summary" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "025ac920-c1c3-401f-b420-18c39b7d04d2", | ||
"metadata": {}, | ||
"source": [ | ||
"# Enrich Feature with Currency" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7aa07b6d-dc96-45e6-a467-8c770cafb84e", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"dataset_names = [\"train\", \"test\"]\n", | ||
"results = {}\n", | ||
"\n", | ||
"temp_ds_df = {}\n", | ||
"temp_resampled_df = {}\n", | ||
"\n", | ||
"\n", | ||
"for ds_name in dataset_names:\n", | ||
" file_name = os.path.join(site_input_dir, site_name , f\"{ds_name}.csv\" )\n", | ||
" ds_df = pd.read_csv(file_name)\n", | ||
" ds_df['Time'] = pd.to_datetime(ds_df['Time'], unit='s')\n", | ||
"\n", | ||
" # Set the Time column as the index\n", | ||
" ds_df.set_index('Time', inplace=True)\n", | ||
" \n", | ||
" resampled_df = ds_df.resample('1H').agg(\n", | ||
" trans_volume=('UETR', 'count'),\n", | ||
" total_amount=('Amount', 'sum'),\n", | ||
" average_amount=('Amount', 'mean')\n", | ||
" ).reset_index()\n", | ||
" \n", | ||
" temp_ds_df[ds_name] = ds_df\n", | ||
" temp_resampled_df[ds_name] = resampled_df\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a2e86bc5-e8ad-41f5-b343-29595a378c03", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"for ds_name in dataset_names:\n", | ||
" \n", | ||
" ds_df = temp_ds_df[ds_name]\n", | ||
" resampled_df = temp_resampled_df[ds_name]\n", | ||
" \n", | ||
" c_df = ds_df[['Currency']].resample('1H').agg({'Currency': 'first'}).reset_index()\n", | ||
" # Add Currency_Country to the resampled data by joining with the original DataFrame\n", | ||
" resampled_df2 = pd.merge(resampled_df, \n", | ||
" c_df,\n", | ||
" on='Time'\n", | ||
" )\n", | ||
" resampled_df3 = pd.merge(resampled_df2, \n", | ||
" history_summary,\n", | ||
" on='Currency'\n", | ||
" )\n", | ||
" resampled_df4 = resampled_df3.copy()\n", | ||
" resampled_df4['x2_y1'] = resampled_df4['average_amount']/resampled_df4['hist_trans_volume']\n", | ||
" \n", | ||
" ds_df = ds_df.sort_values('Time')\n", | ||
" resampled_df4 = resampled_df4.sort_values('Time')\n", | ||
" \n", | ||
" merged_df = pd.merge_asof(ds_df, resampled_df4, on='Time' )\n", | ||
" merged_df = merged_df.drop(columns=['Currency_y']).rename(columns={'Currency_x': 'Currency'})\n", | ||
" \n", | ||
" results[ds_name] = merged_df\n", | ||
" \n", | ||
"print(results)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "7051468f-2de0-4e41-a227-7fad4c9110af", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"source": [ | ||
"# Enrich feature for beneficiary country" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "605095b7-a514-4346-b984-3590d79d13e4", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"history_summary2 = df_history.groupby('Beneficiary_BIC').agg(\n", | ||
" hist_trans_volume=('UETR', 'count'),\n", | ||
" hist_total_amount=('Amount', 'sum'),\n", | ||
" hist_average_amount=('Amount', 'mean')\n", | ||
").reset_index()\n", | ||
"\n", | ||
"history_summary2" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "edabd7be-4864-4964-9e25-df543d5985c6", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"dataset_names = [\"train\", \"test\"]\n", | ||
"results2 = {}\n", | ||
"for ds_name in dataset_names:\n", | ||
" ds_df = temp_ds_df[ds_name]\n", | ||
" resampled_df = temp_resampled_df[ds_name]\n", | ||
" \n", | ||
" c_df = ds_df[['Beneficiary_BIC']].resample('1H').agg({'Beneficiary_BIC': 'first'}).reset_index()\n", | ||
" \n", | ||
" # Add Beneficiary_BIC to the resampled data by joining with the original DataFrame\n", | ||
" resampled_df2 = pd.merge(resampled_df, \n", | ||
" c_df,\n", | ||
" on='Time'\n", | ||
" )\n", | ||
" \n", | ||
" resampled_df3 = pd.merge(resampled_df2, \n", | ||
" history_summary2,\n", | ||
" on='Beneficiary_BIC'\n", | ||
" )\n", | ||
" \n", | ||
" \n", | ||
" resampled_df4 = resampled_df3.copy()\n", | ||
" resampled_df4['x3_y2'] = resampled_df4['average_amount']/resampled_df4['hist_trans_volume']\n", | ||
" \n", | ||
" ds_df = ds_df.sort_values('Time')\n", | ||
" resampled_df4 = resampled_df4.sort_values('Time')\n", | ||
"\n", | ||
" merged_df2 = pd.merge_asof(ds_df, resampled_df4, on='Time' )\n", | ||
" merged_df2 = merged_df2.drop(columns=['Beneficiary_BIC_y']).rename(columns={'Beneficiary_BIC_x': 'Beneficiary_BIC'})\n", | ||
" \n", | ||
" results2[ds_name] = merged_df2\n", | ||
"\n", | ||
"print(results2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a44309a2-e252-458d-a9dc-2691aea9360f", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"final_results = {}\n", | ||
"for name in results:\n", | ||
" df = results[name]\n", | ||
" df2 = results2[name]\n", | ||
" df3 = df2[[\"Time\", \"Beneficiary_BIC\", \"x3_y2\"]].copy()\n", | ||
" df4 = pd.merge(df, df3, on=['Time', 'Beneficiary_BIC'])\n", | ||
" final_results[name] = df4\n", | ||
"\n", | ||
" \n", | ||
"for name in final_results:\n", | ||
" site_dir = os.path.join(site_input_dir, site_name)\n", | ||
" os.makedirs(site_dir, exist_ok=True)\n", | ||
" enrich_file_name = os.path.join(site_dir, f\"{name}_enrichment.csv\")\n", | ||
" print(enrich_file_name)\n", | ||
" final_results[name].to_csv(enrich_file_name) \n", | ||
" \n", | ||
"final_results[\"train\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "47c958c3-bf73-4ab3-a66f-414be10870ea", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"! tree {site_input_dir}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "791ba1db-0ccf-4b31-b838-828d8c6a98a6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ls -al /tmp/dataset/horizontal_credit_fraud_data/ZHSZUS33_Bank_1/" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "eae3d95a-180a-4fb6-b006-1fc1c144c5c4", | ||
"metadata": { | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"! find /tmp/dataset/horizontal_credit_fraud_data/ZHSZUS33_Bank_1/ -exec wc -l {} \\;" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f9966065-80cb-4f85-adab-8c44f01fc8d1", | ||
"metadata": {}, | ||
"source": [ | ||
"Let's go back to the [XGBoost Notebook](../xgboost.ipynb)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d8855463-ce23-44e5-b0ad-4e05d256ba8d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "nvflare_example", | ||
"language": "python", | ||
"name": "nvflare_example" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.18" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.