Skip to content

PyTorch implementation of Unsupervised Data Augmentation

License

Notifications You must be signed in to change notification settings

NTU-P04922004/pytorch_uda

Repository files navigation

PyTorch UDA

Overview

This is an unofficial implementation of the NeurIPS 2020 paper Unsupervised Data Augmentation (UDA).

Results

Error rates on CIFAR-10 test set

Augmentation Paper Reproduced
Crop and flip 10.94 10.93
CutOut 5.43 6.00
  • Setting: CIFAR-10 4000
  • Training with 4,000 labeled samples and 46,000 unlabeled samples

Requirements

  • Python >= 3.6
  • PyTorch >= 1.5
  • torchvision >= 0.6
  • numpy
  • Pillow
  • ruamel.yaml
  • sklearn
  • tqdm

Usage

See train.py and config files in the config folder for more information

References

License

GPLv3

About

PyTorch implementation of Unsupervised Data Augmentation

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages