Skip to content

Commit

Permalink
京都大学 情報学研究科 知能情報学専攻 2023年8月実施 情報学基礎 F1-1 fix
Browse files Browse the repository at this point in the history
  • Loading branch information
Myyura committed Dec 25, 2024
1 parent 45a94b4 commit aa72b9b
Showing 1 changed file with 103 additions and 5 deletions.
108 changes: 103 additions & 5 deletions docs/kakomonn/kyoto_university/informatics/ist_202308_kiso_f1_1.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ tags:
# 京都大学 情報学研究科 知能情報学専攻 2023年8月実施 情報学基礎 F1-1

## **Author**
[Isidore](https://github.com/heacsing)
[Isidore](https://github.com/heacsing), 祭音Myyura

## **Description**
以下の設問において $i$ は虚数単位を, $\mathbb{C}$ は複素数全体の集合を表す。
Expand Down Expand Up @@ -75,19 +75,117 @@ $$
### 設問1
#### (1)
Definition of Unitary Matrix: $D^{H}D=E$, in which $E$ is identity matrix and $D^H$ stands for Hermitian Matrix.
Calculation omitted.

$$
\begin{aligned}
D^{H}
&=
\frac{1}{2}
\begin{pmatrix}
1&1&1&1\\
1&i&-1&-i\\
1&-1&1&-1\\
1&-i&-1&i
\end{pmatrix}
\end{aligned}
$$

$$
\begin{aligned}
DD^{H}
&=
\frac{1}{2}
\begin{pmatrix}
1&1&1&1\\
1&-i&-1&i\\
1&-1&1&-1\\
1&i&-1&-i
\end{pmatrix}
\frac{1}{2}
\begin{pmatrix}
1&1&1&1\\
1&i&-1&-i\\
1&-1&1&-1\\
1&-i&-1&i
\end{pmatrix}
=
\frac{1}{4}
\begin{pmatrix}
4&0&0&0\\
0&4&0&0\\
0&0&4&0\\
0&0&0&4
\end{pmatrix}
= E
\end{aligned}
$$

$$
\begin{align}
D^{H}D
&=
\frac{1}{2}
\begin{pmatrix}
1&1&1&1\\
1&i&-1&-i\\
1&-1&1&-1\\
1&-i&-1&i
\end{pmatrix}
\frac{1}{2}
\begin{pmatrix}
1&1&1&1\\
1&-i&-1&i\\
1&-1&1&-1\\
1&i&-1&-i
\end{pmatrix}
=
\frac{1}{4}
\begin{pmatrix}
4&0&0&0\\
0&4&0&0\\
0&0&4&0\\
0&0&0&4
\end{pmatrix}
= E
\end{align}
$$

Therefore, $D$ is a unitary matrix.

#### (2)
With a process similar to question (1), we know that $G$ is a unitary matrix.

Hence,

$$
\begin{aligned}
(D^{H}GD)^{-1} &= (D^{-1}G^{-1}(D^H)^{-1}) = D^{H}G^{-1}D \\
& =\begin{bmatrix}
(D^{H}GD)^{-1} &= (D^{H}GD)^{H} = D^{H}G^{H}D \\
&= \frac{1}{2}
\begin{pmatrix}
1&1&1&1\\
1&i&-1&-i\\
1&-1&1&-1\\
1&-i&-1&i
\end{pmatrix}
\begin{pmatrix}
1&0&0&0\\
0&-i&0&0\\
0&0&1&0\\
0&0&0&-i
\end{pmatrix}
\frac{1}{2}
\begin{pmatrix}
1&1&1&1\\
1&-i&-1&i\\
1&-1&1&-1\\
1&i&-1&-i
\end{pmatrix}\\
&=\begin{pmatrix}
2-2i & 0 & 2+2i & 0 \\
0 & 2-2i & 0 & 2+2i \\
2+2i & 0 & 2-2i & 0 \\
0 & 2+2i & 0 & 2-2i
\end{bmatrix}
\end{pmatrix}
\end{aligned}
$$

Expand Down

0 comments on commit aa72b9b

Please sign in to comment.