-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
京都大学 情報学研究科 知能情報学専攻 2023年8月実施 専門科目 S-5
- Loading branch information
Showing
3 changed files
with
261 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
258 changes: 258 additions & 0 deletions
258
docs/kakomonn/kyoto_university/informatics/ist_202308_senmon_s_5.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,258 @@ | ||
--- | ||
comments: false | ||
title: 京都大学 情報学研究科 知能情報学専攻 2023年8月実施 専門科目 S-5 | ||
tags: | ||
- Kyoto-University | ||
--- | ||
# 京都大学 情報学研究科 知能情報学専攻 2023年8月実施 専門科目 S-5 | ||
|
||
## **Author** | ||
祭音Myyura | ||
|
||
## **Description** | ||
### 設問1 | ||
2次元信号 $f(x, y)$ の2次元フーリエ変換を | ||
|
||
$$ | ||
F(u, v) = \iint_{-\infty}^{\infty} f(x, y) e^{-j(ux+vy)} dxdy | ||
$$ | ||
|
||
とする。ただし $j$ は虚数単位である。 | ||
また $f(x, y)$ のある軸 $l$ への投影を、軸 $l$ 上の各点における、$l$ に垂直な直線に沿った $f(x, y)$ の線積分とする。以下の問いに答えよ。 | ||
|
||
(1) $f(x, y)$ を $x$ 軸に投影した信号 $p(x)$ の1次元フーリエ変換を、$F(u, v)$ を用いて表せ。 | ||
|
||
(2) 原点を中心として $x$ 軸を反時計回りに角度 $\theta$ 回転して得られた $s$ 軸上に $f(x, y)$ を投影した信号を $p_\theta(s)$ とする。 | ||
$p_\theta(s)$ の $s$ についての1次元フーリエ変換を $F(u, v)$ を用いて表せ。 | ||
|
||
### 設問2 | ||
長さ $N$ の離散時間信号 $x[n]$ の $N$ 点離散フーリエ変換 $X[k]$ を | ||
|
||
$$ | ||
X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad W_N = e^{-j\frac{2\pi}{N}} | ||
$$ | ||
|
||
とする。ただし $j$ は虚数単位、$n, k = 0, \ldots, N-1$ であり、$N$ は正の偶数とする。以下の問いに答えよ。 | ||
|
||
(1) 観測系列 $x_0[n] = \{x_0[0], x_0[1], x_0[2], x_0[3]\} = \{1, 2, 1, -2\}$ を、ある信号を 4000Hz で等間隔にサンプリングすることで得たとする。 | ||
$x_0[n]$ の4点離散フーリエ変換を計算し、周波数(Hz)に対応する振幅スペクトルおよび位相スペクトルを図示せよ。 | ||
|
||
(2) 2つの要素数 $N$ の実数値系列 $x_1[n]$ および $x_2[n]$ の $N$ 点離散フーリエ変換を、1回の $N$ 点離散フーリエによって計算する方法を導出せよ。 | ||
|
||
(3) 要素数 $2N$ の実数値系列の $2N$ 点離散フーリエ変換を、1回の $N$ 点離散フーリエ変換によって計算する方法を導出せよ。 | ||
|
||
## **Kai** | ||
### 設問1 | ||
#### (1) | ||
By the definition of projection, we have | ||
|
||
$$ | ||
p(x) = \int_{-\infty}^{\infty}f(x,y)dy | ||
$$ | ||
|
||
hence the 1D Fourier transform of $p(x)$ is | ||
|
||
$$ | ||
\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}f(x,y)dy\right)e^{-jux}dx | ||
= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j(ux+0\cdot y)}dxdy | ||
= F(u, 0) | ||
$$ | ||
|
||
#### (2) | ||
Let $(s,t)$ denote the coordinates obtained by rotating $(x, y)$ counterclockwise by an angle $\theta$. Then we have | ||
|
||
$$ | ||
\begin{pmatrix} | ||
s\\ | ||
t | ||
\end{pmatrix} | ||
= | ||
\begin{pmatrix} | ||
\cos\theta&-\sin\theta\\ | ||
\sin\theta&\cos\theta | ||
\end{pmatrix} | ||
\begin{pmatrix} | ||
x\\ | ||
y | ||
\end{pmatrix} \Rightarrow | ||
\begin{cases} | ||
x = s\cos\theta-t\sin\theta\\ | ||
y = s\sin\theta+t\cos\theta | ||
\end{cases} | ||
$$ | ||
|
||
by calculating the Jacobian determinant | ||
|
||
$$ | ||
J = | ||
\begin{vmatrix} | ||
\cos\theta&-\sin\theta\\ | ||
\sin\theta&\cos\theta | ||
\end{vmatrix} | ||
= \cos^{2}\theta+\sin^{2}\theta = 1 | ||
$$ | ||
|
||
we know that $f(x,y)dxdy{=}f(s,t)dsdt$. Hence the 1D Fourier transform of $p_{\theta}(x)$ is | ||
|
||
$$ | ||
\begin{aligned} | ||
\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}f(s,t)dt\right)e^{-jus}ds | ||
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(s,t)e^{-j(us+0\cdot t)}dsdt\\ | ||
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j(u\cos\theta x+(-u\sin\theta)y)}dxdy\\ | ||
&= F(u\cos\theta, -u\sin\theta) | ||
\end{aligned} | ||
$$ | ||
|
||
### 設問2 | ||
#### (1) | ||
The 4-point discrete Fourier transform of $x_0[n]$: | ||
|
||
$$ | ||
\begin{pmatrix} | ||
X[0]\\ | ||
X[1]\\ | ||
X[2]\\ | ||
X[3] | ||
\end{pmatrix} | ||
= | ||
\begin{pmatrix} | ||
W_{4}^{0}&W_{4}^{0}&W_{4}^{0}&W_{4}^{0}\\ | ||
W_{4}^{0}&W_{4}^{1}&W_{4}^{2}&W_{4}^{3}\\ | ||
W_{4}^{0}&W_{4}^{2}&W_{4}^{4}&W_{4}^{6}\\ | ||
W_{4}^{0}&W_{4}^{3}&W_{4}^{6}&W_{4}^{9} | ||
\end{pmatrix} | ||
\begin{pmatrix} | ||
x[0]\\ | ||
x[1]\\ | ||
x[2]\\ | ||
x[3] | ||
\end{pmatrix} | ||
= | ||
\begin{pmatrix} | ||
1&1&1&1\\ | ||
1&-j&-1&j\\ | ||
1&-1&1&-1\\ | ||
1&j&-1&-j | ||
\end{pmatrix} | ||
\begin{pmatrix} | ||
1\\ | ||
2\\ | ||
1\\ | ||
-2 | ||
\end{pmatrix} | ||
= | ||
\begin{pmatrix} | ||
2\\ | ||
-4j\\ | ||
2\\ | ||
4j | ||
\end{pmatrix} | ||
$$ | ||
|
||
##### <center> Fig. magnitude and phase spectra | ||
|
||
<figure style="text-align:center;"> | ||
<img src="https://raw.githubusercontent.com/Myyura/the_kai_project_assets/main/kakomonn/kyoto_university/informatics/ist_202308_senmon_s_5_p1.png" width="600" height="220" alt=""/> | ||
</figure> | ||
|
||
#### (2) | ||
|
||
$$ | ||
\begin{aligned} | ||
X[k] | ||
&= \sum_{n=0}^{N-1}x[n]W_{N}^{kn}\\ | ||
&= \sum_{n=0}^{N-1}x[n]\cos\left(2\pi-\frac{2\pi kn}{N}\right) | ||
+ j\sum_{n=0}^{N-1}x[n]\sin\left(2\pi-\frac{2\pi kn}{N}\right)\\ | ||
&= \sum_{n=0}^{N-1}x[n]\cos\frac{2\pi n(N-k)}{N} | ||
+ j\sum_{n=0}^{N-1}x[n]\sin\frac{2\pi n(N-k)}{N}\\ | ||
&= \text{Re } X[N-k]-j\text{Im } X[N-k] | ||
\end{aligned} | ||
$$ | ||
|
||
which implies that | ||
|
||
$$ | ||
\begin{align} | ||
\begin{cases} | ||
\text{Re } X[k] = \text{Re } X[N-k]\\ | ||
\text{Im } X[k] = -\text{Im } X[N-k] | ||
\end{cases} \tag{j} | ||
\end{align} | ||
$$ | ||
|
||
Let $y[n] = x_{1}[n]+j x_{2}[n]$. Let $X_{1}[k],X_{2}[k],Y[k]$ denote the discrete Fourier transform of $x_{1}[n],x_{2}[n],y_{n}$, respectively. Then, | ||
|
||
$$ | ||
\begin{align} | ||
Y[k] | ||
&= \sum_{n=0}^{N-1}(x_{1}[n]+j x_{2}[n])W_{N}^{kn} \nonumber \\ | ||
&= \sum_{n=0}^{N-1}x_{1}[n]W_{N}^{kn}+j\sum_{n=0}^{N-1}x_{2}[n]W_{N}^{kn} \nonumber \\ | ||
&= X_{1}[k]+iX_{2}[k] \nonumber \\ | ||
&= (\text{Re } X_{1}[k]+j\text{Im } X_{1}[k])+j(\text{Re } X_{2}[k]+j \text{Im } X_{2}[k]) \nonumber \\ | ||
&= (\text{Re } X_{1}[k]-\text{Im } X_{2}[k])+j(\text{Im } X_{1}[k]+\text{Re } X_{2}[k]) \tag{ii} | ||
\end{align} | ||
$$ | ||
|
||
By (i) we know that | ||
|
||
$$ | ||
\begin{align} | ||
Y[N-k] | ||
&= (\text{Re } X_{1}[N-k]-\text{Im } X_{2}[N-k])+j(\text{Im } X_{1}[N-k]+\text{Re } X_{2}[N-k]) \nonumber \\ | ||
&= (\text{Re } X_{1}[k]+\text{Im } X_{2}[k])+j(-\text{Im } X_{1}[k]+\text{Re } X_{2}[k]) \tag{iii} | ||
\end{align} | ||
$$ | ||
|
||
and by (ii), (iii) we have | ||
|
||
$$ | ||
\begin{align} | ||
\begin{cases} | ||
\displaystyle | ||
X_{1}[k] = \frac{\text{Re } Y[k]+\text{Re } Y[N-k]}{2}+j\frac{\text{Im } Y[k]-\text{Im } Y[N-k]}{2}\\ | ||
\displaystyle | ||
X_{2}[k] = \frac{\text{Im } Y[k]+\text{Im } Y[N-k]}{2}-j\frac{\text{Re } Y[k]-\text{Re } Y[N-k]}{2} | ||
\end{cases} \tag{iv} | ||
\end{align} | ||
$$ | ||
|
||
#### (3) | ||
By definition we know that $W_{N}^{2kn}{=}W_{N/2}^{kn}$ and $W_{N}^{kN}{=}1$, hence we have | ||
|
||
$$ | ||
\begin{aligned} | ||
X[2k] | ||
&= \sum_{n=0}^{N-1}x[n]W_{2N}^{2kn}+\sum_{n=N}^{2N-1}x[n]W_{2N}^{2kn}\\ | ||
&= \sum_{n=0}^{N-1}x[n]W_{2N}^{2kn}+\sum_{n=0}^{N-1}x[n+N]W_{2N}^{2k(n+N)}\\ | ||
&= \sum_{n=0}^{N-1}x[n]W_{N}^{kn}+\sum_{n=0}^{N-1}x[n+N]W_{N}^{k(n+N)}\\ | ||
&= \sum_{n=0}^{N-1}x[n]W_{N}^{kn}+\sum_{n=0}^{N-1}x[n+N]W_{N}^{kn}\\ | ||
&= \sum_{n=0}^{N-1}(x[n]+x[n+N])W_{N}^{kn}\\ | ||
\end{aligned} | ||
$$ | ||
|
||
Similarly, since $W_{2N}^{N}{=}{-}1$, we have | ||
|
||
$$ | ||
\begin{aligned} | ||
X[2k+1] | ||
&= \sum_{n=0}^{N-1}x[n]W_{2N}^{(2k+1)n}+\sum_{n=0}^{N-1}x[n+N]W_{2N}^{(2k+1)(n+N)}\\ | ||
&= \sum_{n=0}^{N-1}\left(x[n]+x[n+N]W_{2N}^{(2k+1)N}\right)W_{2N}^{(2k+1)n}\\ | ||
&= \sum_{n=0}^{N-1}\left(x[n]+x[n+N]W_{2N}^{N}\right)W_{2N}^{2kn}W_{2N}^{n}\\ | ||
&= \sum_{n=0}^{N-1}\left(x[n]-x[n+N]\right)W_{2N}^{n}W_{N}^{kn} | ||
\end{aligned} | ||
$$ | ||
|
||
Therefore, let $y[n]{=}x[n]{+}x[n+N]$ and $z[n]{=}x[n]{-}x[n+N]$, we have | ||
|
||
$$ | ||
\begin{aligned} | ||
\begin{cases} | ||
X[2k] = \sum_{n=0}^{N-1}y[n]W_{N}^{kn}\\ | ||
X[2k] = \sum_{n=0}^{N-1}y[n]W_{2N}^{n}W_{N}^{kn} | ||
\end{cases} | ||
\end{aligned} | ||
$$ | ||
|
||
which implies that $2N$-point discrete Fourier transforms can be obtained using two executions of the $N$-point Fourier transform. | ||
|
||
By using the result from the previous question (2), it has been demonstrated that the $N$-point discrete Fourier transforms of two different sequences can be obtained using a single execution of the $N$-point Fourier transform, thereby showing that a $2N$-point discrete Fourier transform can be obtained using a single execution of the $N$-point Fourier transform. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters