-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
九州大学 システム情報科学府 情報理工学専攻・電気電子工学専攻 2018年度 複素関数論
- Loading branch information
Showing
3 changed files
with
148 additions
and
0 deletions.
There are no files selected for viewing
144 changes: 144 additions & 0 deletions
144
docs/kakomonn/kyushu_university/ISEE/kyotsu_2018_complex_function_theory.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
--- | ||
comments: false | ||
title: 九州大学 システム情報科学府 情報理工学専攻・電気電子工学専攻 2018年度 複素関数論 | ||
tags: | ||
- Kyushu-University | ||
--- | ||
# 九州大学 システム情報科学府 情報理工学専攻・電気電子工学専攻 2018年度 複素関数論 | ||
|
||
|
||
## **Author** | ||
Zero | ||
|
||
## **Description** | ||
図に示す曲線 $C$ に沿った複素積分 $\oint_C\frac{(\ln z)^2}{z^2 + 1}dz$ を考える.ただし,$R > 1,\varepsilon < 1$ とする.次 | ||
の各問に答えよ. | ||
|
||
(1) $\oint_C\frac{(\ln z)^2}{z^2 + 1}dz$ の値を求めよ. | ||
|
||
(2) $\oint_C\frac{(\ln z)^2}{z^2 + 1}dz$ の値を用いて,$\int_{0}^{\infty}\frac{(\ln x)^2}{x^2 + 1}dx = \frac{\pi^3}{8}$ を示せ. | ||
|
||
<figure style="text-align:center;"> | ||
<img src="https://raw.githubusercontent.com/Myyura/the_kai_project_assets/main/kakomonn/kyushu_university/ISEE/kyotsu_2018_complex_function_theory_p1.png" width="517" height="380" alt=""/> | ||
</figure> | ||
|
||
## **Kai** | ||
### (1) | ||
$f(z) = \frac{(\ln z)^2}{z^2 + 1}$ とおくと、$f(z)$ は $C$ 内部に $1$ 位の極 $i$ をもつ. よって、留数定理より、 | ||
|
||
$$ | ||
\begin{aligned} | ||
\oint f(z)dz &= 2\pi i \cdot \text{Res}_{z = i} \frac{(\ln z)^2}{z^2 + 1} \\ | ||
&= 2\pi i \cdot \frac{(\ln i)^2}{2i} \\ | ||
&= (\ln i)^2 \cdot \pi \\ | ||
&= -\frac{\pi^3}{4} | ||
\end{aligned} | ||
$$ | ||
|
||
### (2) | ||
曲線 $C$ を | ||
- 区間 $[Re^{io},Re^{i\pi}]$ を $C_R$ | ||
- 区間 $[-R,-\varepsilon]$ を $C_1$ | ||
- 区間 $[\varepsilon e^{i\pi},\varepsilon e^{io}]$ を $C_\varepsilon$ | ||
- 区間 $[\varepsilon, R]$ を $C_2$ として。$C = C_R + C_1 + C_{\varepsilon} + C_2$ と表す。 | ||
|
||
$$ | ||
\begin{align} | ||
\oint_C f(z)dz = \int_{CR}f(z)dz + \int_{C_1}f(z)dz + \int_{C\varepsilon}f(z)dz + \int_{C_2}f(z)dz \tag{①} | ||
\end{align} | ||
$$ | ||
|
||
ここで、 | ||
|
||
$$ | ||
\begin{aligned} | ||
\bigg|\int_{C_R}f(z)dz\bigg| &= \bigg|\int_0^{\pi}\frac{(\ln R + i\theta)^2}{R^2e^{2i\theta} + 1} \cdot iRe^{i\theta}d\theta\bigg| \\ | ||
&\leqq \int_0^{\pi}\bigg|\frac{(\ln R + i\theta)^2}{R^2e^{2i\theta} + 1}\cdot R d\theta\bigg| \\ | ||
&\leqq \int_0^{\pi}\frac{(\ln R)^2 + \pi^2}{R^2 - 1} \cdot R d\theta \\ | ||
&= \frac{R}{R^2 - 1}[(\ln R)^2 + \pi^2] \cdot \pi \overset{R \rightarrow \infty}{\longrightarrow}0 | ||
\end{aligned} | ||
$$ | ||
|
||
$$ | ||
\begin{aligned} | ||
\bigg|\int_{C\varepsilon}f(z)dz\bigg| &= \bigg|\int_{\pi}^0 \frac{(\ln \varepsilon + i\theta)^2}{\varepsilon^2e^{2i\theta} + 1}i\varepsilon e^{i\theta}d\theta\bigg| \\ | ||
&\leqq \int_0^{\pi}\bigg|\frac{(\ln \varepsilon)^2 + \pi^2}{1 - \varepsilon^2}\cdot \varepsilon d\theta\bigg| \\ | ||
&= \frac{R}{R^2 - 1}[(\ln R)^2 + \pi^3] \cdot \pi \overset{\varepsilon \rightarrow 0}{\longrightarrow} 0 | ||
\end{aligned} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
\lim_{R \rightarrow \infty,\varepsilon \rightarrow 0}\int_{C_1}f(z)dz &= \int_0^{\infty}\frac{(\ln x + \pi i)^2}{x^2 + 1}dx \notag \\ | ||
&= \int_0^{\infty} \frac{(\ln x)^2}{x^2 + 1}dx + 2\pi i \int_0^{\infty}\frac{\ln x}{x^2 + 1}dx - \pi^2\int_0^{\infty}\frac{1}{x^2 + 1}dx \notag \\ | ||
&= \int_0^{\infty} \frac{(\ln x)^2}{x^2 + 1}dx + 2\pi i \int_0^{\infty}\frac{\ln x}{x^2 + 1}dx - \pi^2[\tan^{-1}x]_0^{\infty} \notag \\ | ||
&= \int_0^{\infty}\frac{(\ln x)^2}{x^2 + 1}dx + 2\pi i \int_0^{\infty}\frac{ln x}{x^2 + 1}dx - \frac{\pi^3}{2} \tag{②} | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
\lim_{R \rightarrow \infty,\varepsilon \rightarrow 0}\int_{C_1}f(z)dz = \int_0^{\infty} \frac{(\ln x)^2}{x^2 + 1}dx \tag{③} | ||
\end{align} | ||
$$ | ||
|
||
② について、$\int_0^{\infty}\frac{\ln x}{x^2 + 1}dx$ を求める。 | ||
|
||
$q(z) = \frac{\ln z}{z^2 + 1}$ とおくと。 | ||
|
||
$$ | ||
\begin{aligned} | ||
\oint_C q(z)dz = 2\pi i \cdot \lim_{z \rightarrow i} \frac{\ln z}{z \rightarrow i} = 2\pi i \cdot \frac{ln i}{2i} = \pi \cdot i \cdot \frac{\pi}{2} = \frac{\pi^2}{2}i | ||
\end{aligned} | ||
$$ | ||
|
||
$f(z)$ と同様に $q(z)$ について、 | ||
|
||
$$ | ||
\begin{aligned} | ||
\bigg|\int_{CR}q(z)dz\bigg| &= \bigg|\int_0^{\pi}\frac{ln R + i\theta}{R^2e^{2i\theta} + 1}i Re^{i\theta}d\theta\bigg| \\ | ||
&\leqq \int_0^{\pi} \frac{R}{R^2 - 1} \cdot \sqrt{(ln R)^2 + \pi^2} d\theta \\ | ||
&= \frac{R}{R^2 - 1}\sqrt{(\ln R)^2 + \pi^2} \cdot \pi \overset{R \rightarrow \infty}{\longrightarrow} 0 | ||
\end{aligned} | ||
$$ | ||
|
||
$$ | ||
\begin{aligned} | ||
\bigg|\int_{C\varepsilon}q(z)dz\bigg| &= \bigg|\int_{\pi}^0\frac{\ln \varepsilon + i\theta}{\varepsilon^2 e^{2i\theta} + 1}i\varepsilon e^{i\theta}d\theta\bigg| \\ | ||
&\leqq \int_0^{\pi}\frac{\varepsilon}{1 - \varepsilon^2}\sqrt{(\ln \varepsilon)^2 + \pi^2}d\theta \\ | ||
&= \frac{\varepsilon}{1 - \varepsilon^2}\sqrt{(\ln \varepsilon)^2 + \pi^2} \cdot \pi \overset{\varepsilon \rightarrow 0}{\longrightarrow} 0 | ||
\end{aligned} | ||
$$ | ||
|
||
$$ | ||
\begin{aligned} | ||
\lim_{R \rightarrow \infty,\varepsilon \rightarrow 0}\int_{C_1}q(z)dz &= \int_0^{\infty}\frac{ln x}{x^2 + 1}dx | ||
\end{aligned} | ||
$$ | ||
より、 | ||
|
||
|
||
$$ | ||
\frac{\pi^2}{2}i = 2\int_0^{\infty}\frac{ln x}{x^2 + 1}dx | ||
$$ | ||
より、 | ||
|
||
$$ | ||
\frac{\pi^2}{2}i = 2\int_0^{\infty}\frac{ln x}{x^2 + 1}dx + \frac{\pi^2}{2}i | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
\therefore \int_0^{\infty}\frac{ln x}{x^2 + 1}dx = 0 \tag{④} | ||
\end{align} | ||
$$ | ||
|
||
① ~ ④ から、 | ||
|
||
$$ | ||
-\frac{\pi^3}{4} = 0 + 2\int_0^{\infty}\frac{(\ln x)^2}{x^2 + 1}dx - \frac{\pi^3}{2} + 0 | ||
$$ | ||
|
||
$$ | ||
\therefore \int_0^{\infty}\frac{(\ln x)^2}{x^2 + 1}dx = \frac{\pi^3}{8} | ||
$$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters