Skip to content

Max-Phairot-A/MixNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MixNet: Joining Force of Classical and Modern Approaches toward The Comprehensive Pipeline in Motor Imagery EEG Classification

Pypi Downloads DOI ARCHFIG

Python API and the novel algorithm for motor imagery EEG classification named MixNet. The API benefits BCI researchers ranging from beginners to experts. We demonstrate examples of using the API for loading six benchmark datasets, preprocessing, training, and validating SOTA models, including MixNet. In summary, the API allows the researchers to construct the pipeline to benchmark the newly proposed and recently developed SOTA models.


Getting started

Dependencies

  • Python==3.8.10
  • tensorflow-gpu==2.7.0
  • tensorflow-addons==0.16.1
  • scikit-learn>=1.2.2
  • wget>=3.2
  • h5py==3.5.0
  • pandas>=2.0
  1. Create docker container with dependencies
docker pull tensorflow/tensorflow:2.7.0-gpu
docker run -ti --name mixnet_container docker.io/tensorflow/tensorflow:2.7.0-gpu bash
wget https://github.com/Max-Phairot-A/MixNet/blob/main/requirement.txt
pip install -r requirements.txt

Installation:

  1. Using pip
pip install mixnet-bci
  1. Using the released python wheel
wget https://github.com/Max-Phairot-A/MixNet/releases/tag/v1.0.0/mixnet_bci-1.0.0-py3-none-any.whl
pip install mixnet_bci-1.0.0-py3-none-any.whl

Usage

Citation

To read & cite our paper, please go to our preprint and our paper.

P. Autthasan, R. Chaisaen, H. Phan, M. D. Vos and T. Wilaiprasitporn, "MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification," in IEEE Internet of Things Journal, vol. 11, no. 17, pp. 28539-28554, 1 Sept.1, 2024, doi: 10.1109/JIOT.2024.3402254.

@ARTICLE{10533256,
  author={Autthasan, Phairot and Chaisaen, Rattanaphon and Phan, Huy and Vos, Maarten De and Wilaiprasitporn, Theerawit},
  journal={IEEE Internet of Things Journal}, 
  title={MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification}, 
  year={2024},
  volume={11},
  number={17},
  pages={28539-28554},
  keywords={Electroencephalography;Task analysis;Feature extraction;Measurement;Internet of Things;Multitasking;Motors;Adaptive gradient blending;brain-computer interface (BCI);deep learning (DL);motor imagery (MI);multitask learning},
  doi={10.1109/JIOT.2024.3402254}}

License

Copyright © 2021-All rights reserved by INTERFACES (BRAIN lab @ IST, VISTEC, Thailand). Distributed by an Apache License 2.0.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published