The aict-tools
are used to train an apply the random forest algorithm for
- Gamma/Hadron Separation
- Energy Regression
- Reconstruction of origin
An updated and improved version of the analysis performed here can be found in the LST_mono_analysis
repository.
-
The models are trained on Monte Carlo simulations of diffuse protons, diffuse gamma-rays and gamma-rays from a point-like source (prod3b).
-
The trained models are used to analyse the following observational data
- Crab Nebula: 2.63h ON and 1.33h OFF (taken on 18.01.2020)
- Markarian 421: 2.22h wobble mode (taken on 20.06.2020)
-
All data (MCs and observations) was processed up to image parameter level (DL1) using
lstchain
(not part of this thesis).
-
Create a new conda environment and install the necessary python packages defined in environment.yaml:
$ conda env create -n bachelor_thesis_lbeiske -f environment.yaml $ conda activate bachelor_thesis_lbeiske
-
Download input files and store in
data
in the root of this repository:- Simulations:
/net/cta-tank/POOL/projects/cta/LST/Simulations/DL1/20190415
(only%_v0.5.1_%
and%_v0.5.2_%
files necessary) - Observational data:
/net/cta-tank/POOL/projects/cta/LST/Data/DL1/v0.5.1
- Simulations:
-
$ make
-
$ mkdir HDD $ make OUTDIR=HDD/build_scaling_300 \ CUTS_CONFIG=config/quality_cuts_300.yaml
-
$ make OUTDIR=HDD/build_noscaling_300 \ GAMMA_FILE=gamma_south_pointing_20200514_v0.5.1_v01_DL1 \ GAMMA_DIFFUSE_FILE=gamma-diffuse_south_pointing_20200514_v0.5.1_v01_DL1 \ PROTON_FILE=proton_south_pointing_20200514_v0.5.1_v01_DL1 \ CUTS_CONFIG=config/quality_cuts_300.yaml
-
$ make OUTDIR=HDD/build_noscaling \ GAMMA_FILE=gamma_south_pointing_20200514_v0.5.1_v01_DL1 \ GAMMA_DIFFUSE_FILE=gamma-diffuse_south_pointing_20200514_v0.5.1_v01_DL1 \ PROTON_FILE=proton_south_pointing_20200514_v0.5.1_v01_DL1
-
$ make build/thesis.pdf
-
Build the presentation:
$ cd presentation $ make