Skip to content

Commit

Permalink
add rep resuklts on kodak dataset
Browse files Browse the repository at this point in the history
  • Loading branch information
hangyu.li committed Apr 9, 2024
1 parent 80e7e07 commit 5ec5f96
Show file tree
Hide file tree
Showing 1,327 changed files with 12,872 additions and 0 deletions.
51 changes: 51 additions & 0 deletions Rep_results/cal_results.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
import argparse
import glob
import os
import csv

parser = argparse.ArgumentParser()
parser.add_argument('--exp_dir', help='exp_dir_of the results of each png file', default='Rep_results/kodak/10w_5loop_train')
args = parser.parse_args()

def cal_avg_psnr_bpp(inputpath):

f = open(inputpath,"r",encoding='utf-8')
lines =f.readlines()
datas = lines[1].split()
f.close()
return float(datas[3]),float(datas[6])

def takeOne(elem):
return elem[0]


if __name__ == '__main__':
lambda_dirs = glob.glob(os.path.join(args.exp_dir,'lamda*'),recursive=False)
for lambda_dir in lambda_dirs:
encoded_images = glob.glob(os.path.join(lambda_dir,'*/results_best.tsv'))
results = {'avg_bpp': [], 'avg_psnr': []}
avg_psnr = avg_bpp = 0.0
img_nums = len(encoded_images)
print('Images count: ' + str(img_nums))


writer_list = [] # 'name' 'psnr' 'bpp'
for i,img in enumerate(encoded_images):
psnr,bpp = cal_avg_psnr_bpp(img)
name = img.split('/')[-2]
writer_list.append([name,psnr,bpp])
avg_psnr += psnr
avg_bpp += bpp
avg_psnr /= img_nums
avg_bpp /= img_nums

writer_list.sort(key=takeOne)


with open(os.path.join(args.exp_dir,lambda_dir.split('/')[-1] +'_encoder_results.csv'), 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['name','psnr','bpp'])
writer.writerows(writer_list)
writer.writerow(['','avg_psnr','avg_bpp'])
writer.writerow(['',avg_psnr, avg_bpp])
f.close()
86 changes: 86 additions & 0 deletions Rep_results/encode_one_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
import glob
import os
import subprocess
import argparse

POSSIBLE_DATASETS = ['kodak', 'clic20-pro-valid', 'clic22-test', 'jvet', 'vcip2023_4k','vcip_4k_g1','vcip_4k_g2','vcip_4k_g3','vcip_4k_g4']
bpp_offical = {
'I01':0.0015,
'I02':0.0009,
'I03':0.0009,
'I04':0.0005,
'I05':0.0005,
'I06':0.0009,
'I07':0.0015,
'I08':0.0003,
'I09':0.0007,
'I10':0.0009,
'I11':0.0009,
'I12':0.00085,
'I13':0.0002,
'I14':0.001,
'I15':0.00085,
'I16':0.00075,
'I17':0.0007,
'I18':0.0008,
'I19':0.0007,
'I20':0.0007,
}

parser = argparse.ArgumentParser()
parser.add_argument('dataset_name', help=f'Possible values {POSSIBLE_DATASETS}.')
parser.add_argument('--lamda', help='d+lamda*R',default=0.0001)
parser.add_argument('--lamda_list', type=list, default=[0.00012,0.0008,0.0008,0.0008,0.00012,0.0008])

args = parser.parse_args()

def lamda_to_str(lamda) :
str_lamda = list()
tmp = lamda
while tmp< 1 :
str_lamda.append(int(tmp * 10))
tmp = tmp * 10
return str_lamda

assert args.dataset_name in POSSIBLE_DATASETS, \
f'Argument must be in {POSSIBLE_DATASETS}. Found {args.dataset_name}!'


# encode images one by one
current_dir_path = os.path.dirname(__file__)
dataset_path = '/home/hangyu.li/workspace/Cool-Chic/dataset'
encoded_image_path = os.path.join(dataset_path,args.dataset_name)

cool_chic_encode_path = os.path.join(current_dir_path, '../src/encode.py')


encoded_images = glob.glob(os.path.join(encoded_image_path,'*.png'))
for encoded_img in encoded_images :
imgname = encoded_img.split("/")[-1].split(".")[0]
output_dir = os.path.join(current_dir_path, args.dataset_name, '10w_5loop_train',f"lamda-{args.lamda}", imgname)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_bitstream_path = os.path.join(output_dir, f'{imgname}.bin')
model_save_path = os.path.join(output_dir, f'video_encoder.pt')
enc_results_path = os.path.join(output_dir, f'{imgname}_encoder_results.txt')
qstep_results_pkl = os.path.join(output_dir, f'{imgname}_qstep_results.pkl')
if os.path.exists(model_save_path):
print(f'skipped_{imgname}')
continue


print(f'\nencoding image: {encoded_img}')
cmd = f'CUDA_VISIBLE_DEVICES=2 python3 {cool_chic_encode_path} \
--input {encoded_img} \
--output {output_bitstream_path} \
--workdir={output_dir}/ \
--lmbda={args.lamda}\
--start_lr=1e-2\
--layers_synthesis=40-1-linear-relu,3-1-linear-relu,X-3-residual-relu,X-3-residual-none\
--upsampling_kernel_size=8 \
--layers_arm=24,24\
--n_ctx_rowcol=3\
--n_ft_per_res=1,1,1,1,1,1,1 \
--n_itr=100000 \
--n_train_loops=5'
subprocess.call(cmd, shell=True)
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
CoolChicEncoder(
(latent_grids): ParameterList(
(0): Parameter containing: [torch.float32 of size 1x1x512x768]
(1): Parameter containing: [torch.float32 of size 1x1x256x384]
(2): Parameter containing: [torch.float32 of size 1x1x128x192]
(3): Parameter containing: [torch.float32 of size 1x1x64x96]
(4): Parameter containing: [torch.float32 of size 1x1x32x48]
(5): Parameter containing: [torch.float32 of size 1x1x16x24]
(6): Parameter containing: [torch.float32 of size 1x1x8x12]
)
(synthesis): Synthesis(
(layers): Sequential(
(0): SynthesisLayer(
(pad): ReplicationPad2d((0, 0, 0, 0))
(conv_layer): Conv2d(7, 40, kernel_size=(1, 1), stride=(1, 1))
(non_linearity): ReLU()
)
(1): SynthesisLayer(
(pad): ReplicationPad2d((0, 0, 0, 0))
(conv_layer): Conv2d(40, 3, kernel_size=(1, 1), stride=(1, 1))
(non_linearity): ReLU()
)
(2): SynthesisResidualLayer(
(pad): ReplicationPad2d((1, 1, 1, 1))
(conv_layer): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
(non_linearity): ReLU()
)
(3): SynthesisResidualLayer(
(pad): ReplicationPad2d((1, 1, 1, 1))
(conv_layer): Conv2d(3, 3, kernel_size=(3, 3), stride=(1, 1))
(non_linearity): Identity()
)
)
)
(noise_quantizer): NoiseQuantizer()
(ste_quantizer): STEQuantizer()
(upsampling): Upsampling(
(upsampling_layer): ConvTranspose2d(1, 1, kernel_size=(1, 1, 8, 8), stride=(2, 2), bias=False)
)
(arm): Arm(
(mlp): Sequential(
(0): CustomLinearResBlock()
(1): ReLU()
(2): CustomLinearResBlock()
(3): ReLU()
(4): CustomLinear()
)
)
)

| module | #parameters or shape | #flops |
|:----------------------------------------|:-----------------------|:----------|
| model | 0.526M | 0.901G |
| latent_grids | 0.524M | |
| latent_grids.0 | (1, 1, 512, 768) | |
| latent_grids.1 | (1, 1, 256, 384) | |
| latent_grids.2 | (1, 1, 128, 192) | |
| latent_grids.3 | (1, 1, 64, 96) | |
| latent_grids.4 | (1, 1, 32, 48) | |
| latent_grids.5 | (1, 1, 16, 24) | |
| latent_grids.6 | (1, 1, 8, 12) | |
| synthesis.layers | 0.611K | 0.221G |
| synthesis.layers.0.conv_layer | 0.32K | 0.11G |
| synthesis.layers.0.conv_layer.weight | (40, 7, 1, 1) | |
| synthesis.layers.0.conv_layer.bias | (40,) | |
| synthesis.layers.1.conv_layer | 0.123K | 47.186M |
| synthesis.layers.1.conv_layer.weight | (3, 40, 1, 1) | |
| synthesis.layers.1.conv_layer.bias | (3,) | |
| synthesis.layers.2.conv_layer | 84 | 31.85M |
| synthesis.layers.2.conv_layer.weight | (3, 3, 3, 3) | |
| synthesis.layers.2.conv_layer.bias | (3,) | |
| synthesis.layers.3.conv_layer | 84 | 31.85M |
| synthesis.layers.3.conv_layer.weight | (3, 3, 3, 3) | |
| synthesis.layers.3.conv_layer.bias | (3,) | |
| upsampling.upsampling_layer | 64 | 50.909M |
| upsampling.upsampling_layer.weight | (1, 1, 8, 8) | |
| arm.mlp | 1.25K | 0.629G |
| arm.mlp.0 | 0.6K | 0.302G |
| arm.mlp.0.weight | (24, 24) | |
| arm.mlp.0.bias | (24,) | |
| arm.mlp.2 | 0.6K | 0.302G |
| arm.mlp.2.weight | (24, 24) | |
| arm.mlp.2.bias | (24,) | |
| arm.mlp.4 | 50 | 25.164M |
| arm.mlp.4.weight | (2, 24) | |
| arm.mlp.4.bias | (2,) | |

----------------------------------
Total MAC / decoded pixel: 2291.4
----------------------------------
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
loss nn_bpp latent_bpp psnr_db ms_ssim_db lpips_db total_rate_bpp lmbda time_sec itr mac_decoded_pixel feature_rate_bpp_00 feature_rate_bpp_01 feature_rate_bpp_02 feature_rate_bpp_03 feature_rate_bpp_04 feature_rate_bpp_05 feature_rate_bpp_06 alpha beta pred_db dummy_pred img_size n_pixels display_order coding_order seq_name arm_rate_bpp upsampling_rate_bpp synthesis_rate_bpp
0.298877 0.040827 2.119735 40.818605 25.542143 -0.000000 2.160562 0.000100 4042.056376 104884 2291.371094 1.965579 0.069934 0.042715 0.029734 0.007691 0.002903 0.001179 1.000000 1.000000 7.015595 nan 512x768 393216 0 0 kodim01 0.021354 0.001385 0.018087
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
loss nn_bpp latent_bpp psnr_db ms_ssim_db lpips_db total_rate_bpp lmbda time_sec itr mac_decoded_pixel feature_rate_bpp_00 feature_rate_bpp_01 feature_rate_bpp_02 feature_rate_bpp_03 feature_rate_bpp_04 feature_rate_bpp_05 feature_rate_bpp_06 alpha beta pred_db dummy_pred img_size n_pixels display_order coding_order seq_name arm_rate_bpp upsampling_rate_bpp synthesis_rate_bpp
0.298877 0.040827 2.119735 40.818605 25.542143 -0.000000 2.160562 0.000100 4042.056376 104884 2291.371094 1.965579 0.069934 0.042715 0.029734 0.007691 0.002903 0.001179 1.000000 1.000000 7.015595 nan 512x768 393216 0 0 kodim01 0.021354 0.001385 0.018087
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
loss nn_bpp latent_bpp psnr_db ms_ssim_db lpips_db total_rate_bpp lmbda time_sec itr mac_decoded_pixel feature_rate_bpp_00 feature_rate_bpp_01 feature_rate_bpp_02 feature_rate_bpp_03 feature_rate_bpp_04 feature_rate_bpp_05 feature_rate_bpp_06 alpha beta pred_db dummy_pred img_size n_pixels display_order coding_order seq_name arm_rate_bpp upsampling_rate_bpp synthesis_rate_bpp
0.316812 0.037137 2.126358 39.979968 24.795748 -0.000000 2.163494 0.000100 8007.482905 210248 2291.371094 1.916443 0.134619 0.043232 0.019158 0.007753 0.003865 0.001290 1.000000 1.000000 7.015595 nan 512x768 393216 0 0 kodim01 0.020064 0.001112 0.015961
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
loss nn_bpp latent_bpp psnr_db ms_ssim_db lpips_db total_rate_bpp lmbda time_sec itr mac_decoded_pixel feature_rate_bpp_00 feature_rate_bpp_01 feature_rate_bpp_02 feature_rate_bpp_03 feature_rate_bpp_04 feature_rate_bpp_05 feature_rate_bpp_06 alpha beta pred_db dummy_pred img_size n_pixels display_order coding_order seq_name arm_rate_bpp upsampling_rate_bpp synthesis_rate_bpp
0.319148 0.036207 2.129885 39.891109 24.616515 -0.000000 2.166092 0.000100 11986.141246 315583 2291.371094 1.930957 0.112920 0.047470 0.024197 0.010584 0.002664 0.001093 1.000000 1.000000 7.015595 nan 512x768 393216 0 0 kodim01 0.020020 0.001078 0.015109
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
loss nn_bpp latent_bpp psnr_db ms_ssim_db lpips_db total_rate_bpp lmbda time_sec itr mac_decoded_pixel feature_rate_bpp_00 feature_rate_bpp_01 feature_rate_bpp_02 feature_rate_bpp_03 feature_rate_bpp_04 feature_rate_bpp_05 feature_rate_bpp_06 alpha beta pred_db dummy_pred img_size n_pixels display_order coding_order seq_name arm_rate_bpp upsampling_rate_bpp synthesis_rate_bpp
0.300215 0.039554 2.123958 40.764237 25.547711 -0.000000 2.163512 0.000100 15966.292464 420585 2291.371094 1.975977 0.076771 0.032639 0.026006 0.007967 0.003330 0.001269 1.000000 1.000000 7.015595 nan 512x768 393216 0 0 kodim01 0.020667 0.001397 0.017490
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
loss nn_bpp latent_bpp psnr_db ms_ssim_db lpips_db total_rate_bpp lmbda time_sec itr mac_decoded_pixel feature_rate_bpp_00 feature_rate_bpp_01 feature_rate_bpp_02 feature_rate_bpp_03 feature_rate_bpp_04 feature_rate_bpp_05 feature_rate_bpp_06 alpha beta pred_db dummy_pred img_size n_pixels display_order coding_order seq_name arm_rate_bpp upsampling_rate_bpp synthesis_rate_bpp
0.314463 0.037093 2.139757 40.142254 24.893925 -0.000000 2.176850 0.000100 19952.731834 525674 2291.371094 1.934386 0.111429 0.042555 0.035368 0.011020 0.003671 0.001329 1.000000 1.000000 7.015595 nan 512x768 393216 0 0 kodim01 0.020375 0.001572 0.015146
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
['/home/hangyu.li/workspace/Cool-Chic/Rep_results/../src/encode.py', '--input', '/home/hangyu.li/workspace/Cool-Chic/dataset/kodak/kodim01.png', '--output', '/home/hangyu.li/workspace/Cool-Chic/Rep_results/kodak/10w_5loop_train/lamda-0.0001/kodim01/kodim01.bin', '--workdir=/home/hangyu.li/workspace/Cool-Chic/Rep_results/kodak/10w_5loop_train/lamda-0.0001/kodim01/', '--lmbda=0.0001', '--start_lr=1e-2', '--layers_synthesis=40-1-linear-relu,3-1-linear-relu,X-3-residual-relu,X-3-residual-none', '--upsampling_kernel_size=8', '--layers_arm=24,24', '--n_ctx_rowcol=3', '--n_ft_per_res=1,1,1,1,1,1,1', '--n_itr=100000', '--n_train_loops=5']
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
loss nn_bpp latent_bpp psnr_db ms_ssim_db lpips_db total_rate_bpp lmbda time_sec itr mac_decoded_pixel feature_rate_bpp_00 feature_rate_bpp_01 feature_rate_bpp_02 feature_rate_bpp_03 feature_rate_bpp_04 feature_rate_bpp_05 feature_rate_bpp_06 alpha beta pred_db dummy_pred img_size n_pixels display_order coding_order seq_name arm_rate_bpp upsampling_rate_bpp synthesis_rate_bpp
0.298877 0.040827 2.119735 40.818605 25.542143 -0.000000 2.160562 0.000100 4042.056376 104884 2291.371094 1.965579 0.069934 0.042715 0.029734 0.007691 0.002903 0.001179 1.000000 1.000000 7.015595 nan 512x768 393216 0 0 kodim01 0.021354 0.001385 0.018087
Binary file not shown.
Loading

0 comments on commit 5ec5f96

Please sign in to comment.