Skip to content

Commit

Permalink
fix github action build & bump revision
Browse files Browse the repository at this point in the history
  • Loading branch information
taobrienlbl committed Oct 10, 2023
1 parent 4b397d0 commit 478acc4
Show file tree
Hide file tree
Showing 4 changed files with 7 additions and 10 deletions.
12 changes: 4 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,4 @@
<a target="_blank" href="https://colab.research.google.com/github/LBL-EESA/fastkde/blob/main/testing/readme_test.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
<a target="_blank" href="https://colab.research.google.com/github/LBL-EESA/fastkde/blob/main/testing/readme_test.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a>

# fastKDE

Expand All @@ -13,11 +11,10 @@ state-of-the-science 'R' KDE packages, and it does so 10,000 times
faster for bivariate data (even better improvements for higher
dimensionality).

*Please cite the following papers when using this method:*
**Please cite the following papers when using this method:**

`O’Brien, T. A., Kashinath, K., Cavanaugh, N. R., Collins, W. D. & O’Brien, J. P. A fast and objective multidimensional kernel density estimation method: fastKDE. Comput. Stat. Data Anal. 101, 148–160 (2016). <http://dx.doi.org/10.1016/j.csda.2016.02.014>`__

`O’Brien, T. A., Collins, W. D., Rauscher, S. A. & Ringler, T. D. Reducing the computational cost of the ECF using a nuFFT: A fast and objective probability density estimation method. Comput. Stat. Data Anal. 79, 222–234 (2014). <http://dx.doi.org/10.1016/j.csda.2014.06.002>`__
* O’Brien, T. A., Kashinath, K., Cavanaugh, N. R., Collins, W. D. & O’Brien, J. P. *A fast and objective multidimensional kernel density estimation method: fastKDE.* Comput. Stat. Data Anal. 101, 148–160 (2016). [http://dx.doi.org/10.1016/j.csda.2016.02.014](http://dx.doi.org/10.1016/j.csda.2016.02.014)
* O’Brien, T. A., Collins, W. D., Rauscher, S. A. & Ringler, T. D. *Reducing the computational cost of the ECF using a nuFFT: A fast and objective probability density estimation method.* Comput. Stat. Data Anal. 79, 222–234 (2014). [http://dx.doi.org/10.1016/j.csda.2014.06.002](http://dx.doi.org/10.1016/j.csda.2014.06.002)

### Example usage:

Expand Down Expand Up @@ -90,7 +87,6 @@ pOfYGivenX, values = fastKDE.conditional(y,x)
The following plot shows the results:

```python

#***************************
# Plot the conditional
#***************************
Expand Down
2 changes: 1 addition & 1 deletion REVISION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.0.28
1.0.29
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[project]
name = "fastkde"
dynamic = ["dependencies", "version"]
dynamic = ["dependencies", "version", "optional-dependencies", "description", "readme", "authors", "keywords"]

[tool.setuptools.dynamic]
dependencies = {file = ["requirements.txt"]}
Expand Down
1 change: 1 addition & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@
version=revision,
description='Tools for fast and robust univariate and multivariate kernel density estimation',
long_description=long_description,
long_description_content_type='text/markdown',
author="Travis A. O'Brien",
author_email="[email protected]",
url="https://github.com/LBL-EESA/fastkde",
Expand Down

0 comments on commit 478acc4

Please sign in to comment.