Skip to content

It's a notebook of games-101, which instructd by lingqi yan in 2020.

Notifications You must be signed in to change notification settings

KevinSONG729/Modern_Computer_Graphics

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 

Repository files navigation

Modern Computer Graphics

It's a notebook of games-101 which is instructed by Lingqi Yan

微信截图_20220212021425

Class website: https://sites.cs.ucsb.edu/~lingqi/teaching/games101.html

Course Topics

  • Rasterization
    • Project geometry primitives (3D triangles/polygons) onto the screen
    • Break projected primitives into fragments (pixels)
    • Gold standard in video games (ream-time applications)
  • Curves and Meshes
    • How to represent geometry in computer graphics
      • Bezier Curve
      • Catmull-Clark subdivision
  • Ray Tracing
    • shoot rays from the camera though each pixel
      • calculate intersection and shading
      • continue to bounce the rays till they hit light sources
    • gold standard in animations/movies (off-line application)
  • Animation/Simulation
    • key frame animation
    • mass-spring system

Relations between computer graphics and computer vision?

  flowchart LR
  	a[model<br>Computer Graphics<br>modeling,simulation]--'computer Graphics <br> Rendering'-->b
  	b[image<br>computer vision<br>image processing<br>not comp. photography]--'computer vision'-->a
  	a-->a
  	b-->b
  	
Loading

A Swift and Brutal Introduction to Linear Algebra

Graphics' Dependencies

  • Basic mathematics
    • Linear algebra,calculus,statistics
  • Basic physics
    • optics, mechanics
  • Misc
    • signal processing
    • numerical analysis

Vectors

  • usually written as $\vec{a}$ or in bold a
  • or using start and end points $\vec{AB}=B-A$
  • direction and length
  • no absolute starting position

Vector Normalization

  • magnitude (length) og a vector written as $\left| \vec{a} \right |$
  • unit vector
    • a vector with magnitude of 1
    • finding the unit vector of a vector (normalization) : $\hat{a}=\vec{a}/\left| \vec{a} \right |$
    • used to represent directions

Vector Addition

  • geometrically: parallelogram law & triangle law
  • algebraically: simply add coordinates

Vector Multiplication

  • Dot product

    • $a\cdot b=\left|a\right|\left|b\right|cos \theta$
    • in graphics
      • find angle between two vectors (i.e. cosine of angle between light source and surface)
      • find projection of one vector on another
      • measures how close two directions are
      • decompose a vector
      • determine forward / backward
        • dot product > or < 0
    • dot product for projection
      • $\vec{b}_{\perp}$: projection of $\vec{b}$ onto $\vec{a}$
        • $\vec{b}_{\perp}$ must be along $\vec{a}$ (or along $\hat{a}$)
        • $\vec{b}_{\perp}=k \hat{a}$
      • what's its magnitude k?
        • $k=\left|\vec{b}_{\perp}\right|=\left|\vec{b}\right|cos \theta$
  • Cross product

    • $a \times b=-b\times a$

    • $\vec{a}\times \vec{a}=\vec{0}$

    • $\vec{a}\times(\vec{b}+\vec{c})=\vec{a}\times\vec{b}+\vec{a}\times{c}$

    • $\vec{a}\times(k\vec{b})=k(\vec{a}\times\vec{b})$

    • $\left|a\times b\right|=\left|a\right|\left|b\right|sin\phi$

    • cross product is orthogonal to two initial vectors

    • direction determined by right-hand rule

    • useful in constructing coordinate systems (later)

    • properties (right handed coordinate)

      • $\vec{x}\times \vec{y}=+\vec{z}$
      • $\vec{y}\times \vec{x}=-\vec{z}$
      • $\vec{y}\times \vec{z}=+\vec{x}$
      • $\vec{z}\times \vec{y}=-\vec{x}$
      • $\vec{z}\times \vec{x}=+\vec{y}$
      • $\vec{x}\times \vec{z}=-\vec{y}$
    • Cartesian formula

    • $\vec{a}\times\vec{b}=\begin{pmatrix}y_az_b-y_bz_a\z_ax_b-x_az_b\x_ay_b-y_ax_b\end{pmatrix}=A*b=\underset{\text {dual matrix of vector a}}{\begin{pmatrix}0&-z_a&y_a\z_a&0&-x_A\-y_a&x_a&0\end{pmatrix}}\begin{pmatrix}x_b\y_b\z_b\end{pmatrix}$

    • in graphics

      • determine left / right
      • determine inside / outside
        • if a point is at the outside of shape, it will be locate at least at a vector's right
  • Orthonormal bases and coordinate frames

    • important for representing points, positions, locations
    • often, many sets of coordinate systems
      • global,local,world,model,parts of model (head, hands, ...)
    • critical issue is transforming between these systems/bases
    • any set of 3 vectors (in 3D) that
      • $\left|\vec{u}\right|=\left|\vec{v}\right|=\left|\vec{w}\right|=1$
      • $\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{w}=\vec{u}\cdot\vec{w}=0$
      • $\vec{w}=\vec{u}\times\vec{v}$ (right-handed)
      • $\vec{p}=\underset{projection}{(\vec{p}\cdot\vec{u})}\vec{u}+(\vec{p}\cdot\vec{v})\vec{v}+(\vec{p}\cdot\vec{w})\vec{w}$
  • Matrices

    • in graphics, pervasively used to represent transformations
      • translation, rotation, shear, scale
    • properties
      • transpose
        • $(AB)^T=B^TA^T$
      • non-commutative
        • AB and BA are different in general
      • associative and distributive
        • $(AB)C=A(BC)$
        • $A(B+C)=AB+AC$
        • $(A+B)C=AC+BC$

Transformation

scale matrix

$$\begin{bmatrix}x'\y'\end{bmatrix}=\begin{bmatrix}s_x&0\0&s_y\end{bmatrix}\begin{bmatrix}x\y\end{bmatrix}$$

reflection matrix

horizontal reflection

$$\begin{bmatrix}x'\y'\end{bmatrix}=\begin{bmatrix}-1&0\0&1\end{bmatrix}\begin{bmatrix}x\y\end{bmatrix}$$

shear matrix

$$\begin{bmatrix}x'\y'\end{bmatrix}=\begin{bmatrix}1&a\0&1\end{bmatrix}\begin{bmatrix}x\y\end{bmatrix}$$

rotate

about the origin (0,0), CCW by default

$$R_\theta=\begin{bmatrix}cos\theta&-sin\theta\sin\theta&cos\theta\end{bmatrix}$$

$$R_{-\theta}=\begin{bmatrix}cos\theta&sin\theta\-sin\theta&cos\theta\end{bmatrix}=R^T_\theta=R^{-1}_\theta$$

linear transforms

linear transforms = matrix (of the same dimension)

$$x'=Mx$$

homogeneous coordinates

why choose homogeneous coordinates?

  • translation cannot be represented in matrix form

  • $x'=ax+by+t_x, y'=cx+dy+t_y$

  • $\begin{bmatrix}x'\y'\end{bmatrix}=\begin{bmatrix}a&b\c&d\end{bmatrix}\begin{bmatrix}x\y\end{bmatrix}+\begin{bmatrix}t_x\t_y\end{bmatrix}$

  • so, translation is not linear transform!

    But we don't want translation to be a special case.

    Is there a unified way to represent all transformations? (and what's the cost?)

  • add a third coordinate (w-coordinate)

    • 2D point = $(x,y,1)^T$
    • 2D vector = $(x,y,0)^T$
    • $\begin{pmatrix}x\y\w\end{pmatrix}$ is the 2D point $\begin{pmatrix}x/w\y/w\1\end{pmatrix}$, $w\ne 0$
  • matrix representation of translations

    $$\begin{pmatrix}x'\y'\w'\end{pmatrix}=\begin{pmatrix}1&0&t_x\0&1&t_y\0&0&1\end{pmatrix}\cdot\begin{pmatrix}x\y\1\end{pmatrix}=\begin{pmatrix}x+t_x\y+t_y\1\end{pmatrix}$$

  • valid operation if w-coordinate of result is 1 or 0

    • vector + vector =vector
    • point - point = vector
    • point + vector = point
    • point + point = the center between two points

affine transformations

  • affine map = linear map + translation

    $\begin{pmatrix}x'\y'\end{pmatrix}=\begin{pmatrix}a&b\c&d\end{pmatrix}\cdot\begin{pmatrix}x\y\end{pmatrix}+\begin{pmatrix}t_x\t_y\end{pmatrix}$

  • using homogeneous coordinates

    $\begin{pmatrix}x'\y'\1\end{pmatrix}=\begin{pmatrix}a&b&t_x\c&d&t_y\0&0&1\end{pmatrix}\cdot\begin{pmatrix}x\y\1\end{pmatrix}$

2D transformations

scale

$$S(s_x,s_y)=\begin{pmatrix}s_x&0&0\0&s_y&0\0&0&1\end{pmatrix}$$

rotation

picture/Screenshot from 2022-01-10 14-25-25

$$R(\alpha)=\begin{pmatrix}cos\alpha& -sin\alpha &0\sin\alpha & cos\alpha&0\0&0&1\end{pmatrix}$$

translation

$$T(t_x,t_y)=\begin{pmatrix}1&0&t_x\0&1&t_y\0&0&1\end{pmatrix}$$

composite transformation

transform ordering matters!!!

  • if translate then rotate? or rotate then translate? --> rotate then translate is correct

    $$T_{(1,0)}\cdot R_{45}\begin{bmatrix}x\y\1\end{bmatrix}=\begin{bmatrix}1&0&1\0&1&0\0&0&1\end{bmatrix}\begin{bmatrix}cos45^{\circ} &-sin45^{\circ} &0\sin45^{\circ} &cos45^{\circ} &0\0&0&1\end{bmatrix}\begin{bmatrix}x\y\1\end{bmatrix} $$

    Note that matrices are applied right to left

sequence of affine transforms

  • compose by matrix multiplication
  • $$A_n(...A_2(A_1(x)))=A_n...A_2\cdot A_1\cdot \begin{pmatrix}x\y\1\end{pmatrix}$$

Decomposing complex transforms

Example: How to rotate around a given point?

  • translate center to origin
  • rotate
  • translate back

matrix representation?

$$T(c)\cdot R(\alpha)\cdot T(-c)$$

3D transformations

using homogeneous coordinates again

  • 3D point = $(x,y,z,1)^T$
  • 3D vector = $(x,y,z,0)^T$

in general, $(x,y,z,w)$ $(w\ne 0)$ is the 3D pont : $(x/w,y/w,z/w)$

use $4\times4$ matrices for affine transformations

$\begin{pmatrix}x'\y'\z'\1\end{pmatrix}=\begin{pmatrix}a&b&c&t_x\d&e&f&t_y\g&h&i&t_z\0&0&0&1\end{pmatrix}\cdot\begin{pmatrix}x\y\z\1\end{pmatrix}$

what's the order?

linear first, then translation

3D scale

$$S(s_x,s_y,s_z)=\begin{pmatrix}s_x&0&0&0\0&s_y&0&0\0&0&s_z&0\0&0&0&1\end{pmatrix}$$

3D translation

$$T(t_x,t_y,t_z)=\begin{pmatrix}1&0&0&t_x\0&1&0&t_y\0&0&1&t_z\0&0&0&1\end{pmatrix}$$

rotation around x, y, or z-axis

picture/Screenshot from 2022-01-10 14-23-11

$$R_x(\alpha)=\begin{pmatrix}1&0&0&0\0&cos\alpha&-sin\alpha&0\0&sin\alpha&cos\alpha&0\0&0&0&1\end{pmatrix}$$

$$R_x(\alpha)=\begin{pmatrix}cos\alpha&0&sin\alpha&0\0&1&0&0\-sin\alpha&0&cos\alpha&0\0&0&0&1\end{pmatrix}$$

$$R_x(\alpha)=\begin{pmatrix}cos\alpha&-sin\alpha&0&0\sin\alpha&cos\alpha&0&0\0&0&1&0\0&0&0&1\end{pmatrix}$$

3D rotations

compose any 3D rotation from $R_x,R_y,R_z$

$$R_{xyz}(\alpha,\beta,\gamma)=R_x(\alpha)R_y(\beta)R_z(\gamma)$$

  • so-called Euler angles
  • often used in flight simulator : roll,pitch, yaw

picture/Screenshot from 2022-01-10 14-23-55

Rodrigues' rotation formula
  • rotation by angle $\alpha$ around axis $n$

    $$R(n,\alpha)=cos(\alpha)I+(1-cos(\alpha))nn^T+sin(\alpha)\begin{pmatrix}0&-n_z&n_y\n_z&0&-n_x\-n_y&n_x&0\end{pmatrix}$$

prove

picture/Screenshot from 2022-01-10 13-40-33

picture/Screenshot from 2022-01-10 13-40-40

viewing transformation

what's view transformation?

  • think about how to take a photo?

    • find a good place and arrange people (model transformation)

    • find a good "angle" to put the camera (view transformation)

    • cheese! (projection transformation)

view / camera transformation

  • how to perform view transformation?
  • define the camera first
    • position $\vec{e}$
    • look-at / gaze direction $\hat{g}$
    • up direction $\hat{t}$ (assuming perp. to look-at)

picture/Screenshot from 2022-01-10 14-24-26

  • key observation
    • if the camera and all objects move together, the "photo" will be the same
  • how about that we always transform the camera to
    • the origin, up at Y, look at -Z
    • and transform the objects along with the camera
  • transform the camera by $M_{view}$
  • $M_{view}$ in math?
    • $M_{view}=R_{view}T_{view}$
      • $T_{view}=\begin{bmatrix}1&0&0&-x_e\0&1&0&-y_e\0&0&1&-z_e\0&0&0&1\end{bmatrix}$
    • translate $e$ to origin
    • rotate $g$ to -Z, $t$ to Y, ($g\times t$) to X
      • but it's difficult to present
    • so consider its inverse rotation : X to ($g\times t$), Y to $t$, Z to $-g$
    • $$R^{-1}{view}=\begin{bmatrix}x{\hat{g}\times\hat{t}}&x_t&x_{-g}&0\y_{\hat{g}\times\hat{t}}&y_t&y_{-g}&0\z_{\hat{g}\times\hat{t}}&z_t&z_{-g}&0\0&0&0&1\end{bmatrix}$$
    • because rotation matrix is orthogonal, so its inverse is its transposition matrix
    • $$R_{view}=\begin{bmatrix}x_{\hat{g}\times\hat{t}}&y_{\hat{g}\times\hat{t}}&z_{\hat{g}\times\hat{t}}&0\x_t&y_t&z_t&0\x_{-g}&y_{-g}&z_{-g}&0\0&0&0&1\end{bmatrix}$$

projection transformation

picture/Screenshot from 2022-01-10 14-54-06

orthographic projection

  • camera located at origin, looking at -Z, up at Y
  • drop Z coordinate
  • translate and scale the resulting rectangle to $[-1,1]^2$

picture/Screenshot from 2022-01-10 14-58-31

  • in general, we want to map a cuboid $[l,r]\times [b,t]\times[f,n]$ to the "canonical" cube $[-1,1]^3$
    • if something nearer to us , z's value will be samller

picture/Screenshot from 2022-01-10 15-02-09

  • transformation matrix

    • translate (center to origin) first, then scale (length/width/height to 2)

      $$M_{ortho}=\begin{bmatrix}\frac{2}{r-l}&0&0&0\0&\frac{2}{t-b}&0&0\0&0&\frac{2}{n-f}&0\0&0&0&1\end{bmatrix}\begin{bmatrix}1&0&0&-\frac{r+l}{2}\0&1&0&-\frac{t+b}{2}\0&0&1&-\frac{n+f}{2}\0&0&0&1\end{bmatrix}$$

  • caveat

    • looking at / along -Z is making near and far not intuitive (n>f)
    • FYI : that's why OpenGL uses left hand coords

perspective projection

picture/Screenshot from 2022-01-10 15-10-45

  • most common projection
  • further objects are smaller
  • parallel lines not parallel
  • coverage to single points
how to do perspective projection?
  • first "squish" the frustum into a cuboid (n->n, f->f) ($M_{persp-&gt;ortho}$)
  • do orthographic projection ($M_{ortho}$, already known!)

picture/Screenshot from 2022-01-10 15-15-29

how to get transformation?
  • recall the key idea : find the relationship between transformed points $(x',y',z')$ and the original points $(x,y,z)$
  • $$y'=\frac{n}{z}y$$
  • $$x'=\frac{n}{z}x$$

picture/Screenshot from 2022-01-10 15-20-08

  • in homogeneous coordinates

    $$\begin{pmatrix}x\y\z\1\end{pmatrix}\rightarrow \begin{pmatrix}\frac{nx}{z}\\frac{ny}{z}\\text{unknown}\1\end{pmatrix}=\begin{pmatrix}nx\ny\\text{still unknown}\1\end{pmatrix}$$

  • so the "squish" (persp to ortho) projection does this

    $$M^{(4\times4)}_{persp\rightarrow ortho}\begin{pmatrix}x\y\z\1\end{pmatrix}=\begin{pmatrix}nx\ny\\text{unknown}\1\end{pmatrix}$$

  • already goog enough to figure out part of $M_{persp\rightarrow ortho}$

    $$M_{persp\rightarrow ortho}=\begin{pmatrix}n&0&0&0\0&n&0&0\?&?&?&?\0&0&1&0\end{pmatrix}$$

  • observation : the third row is responsible for z

    • any point on the near plane will not change

      $$M^{(4\times4)}_{persp\rightarrow ortho}\begin{pmatrix}x\y\z\1\end{pmatrix}=\begin{pmatrix}nx\ny\\text{unknown}\1\end{pmatrix}\underset{\text{replace z with n}}{\longrightarrow}\begin{pmatrix}x\y\n\1\end{pmatrix}==\begin{pmatrix}nx\ny\n^2\n\end{pmatrix}$$

      so the third row must be of the form $\begin{pmatrix}0&0&A&B\end{pmatrix}$

      $$\begin{pmatrix}0&0&A&B\end{pmatrix}\begin{pmatrix}x\y\n\1\end{pmatrix}=n^2 (n^2\text{ has noting to do with x and y})$$

      $$An+b=n^2$$

    • any point's z on the far plane will not change

      $$\begin{pmatrix}0\0\f\1\end{pmatrix}==\begin{pmatrix}0\0\f^2\f\end{pmatrix}\rightarrow Af+B=f^2$$

  • now we have two formulates and solve A and B

    $$\begin{matrix}An+B=n^2\Af+B=f^2\end{matrix}\rightarrow\begin{matrix}A=n+f\B=-nf\end{matrix}$$

  • finally, every entry in $M_{persp\rightarrow ortho}$ is known

  • what's next?

    • do orthographic projection ($M_{ortho}$) to finish
    • $M_{persp} = M_{ortho}M_{persp\rightarrow ortho}$

Rasterization

triangles

  • sometimes people prefer :

    vertical field-of-view (fovY) and aspect ratio (assume symmetry i.e. l = -r, b = -t)

picture/Screenshot from 2022-01-10 15-48-57

  • how to convert from fovY and aspect to l,r,b,t?
    • trivial

picture/Screenshot from 2022-01-12 22-53-32

what's after MVP?

  • Model transformation (placing objects)
  • View transformation (placing camera)
  • Projection transformation
    • orthographic projection (cuboid to "canonical" cube $[-1,1]^3$)
    • perspective projection (frustum to "canonical" cube)
  • Canonical cube to screen
    • what's a screen?
      • an array of pixels
      • size of the array : resolution
      • a typical kind of raster display
    • raster == screen in german
      • rasterize == drawing onto the screen
    • pixel (FYI, short for "picture element")
      • color is a mixture of RGB
    • define the screen space
      • pixels' indices are in the form of (x,y), where both x and y are integers
      • pixels' indeices are form (0,0) to (width - 1, height - 1)
      • pixel (x,y) is centered at (x + 0.5, y + 0.5)
      • the screen covers range (0,0) to (width,height)

picture/Screenshot from 2022-01-12 23-10-31

  • transform in xy plane : $[-1,1]^2$ to [0, width] *[0,height]
  • irrelevant to z
  • viewport transform matrix

$$M_{viewport}=\begin{pmatrix}\frac{width}{2}&0&0&\frac{width}{2}\0&\frac{height}{2}&0&\frac{height}{2}\0&0&1&0\0&0&0&1\end{pmatrix}$$

drawing to raster displays

  • polygon meshes
  • triangle meshes
    • why triangles?
      • most basic polygon
        • break up other polygons
      • uniques properties
        • guaranteed to be planar
        • well-defined interior
        • well-defined method for interpolating values at vertices over triangle (barycentric interpolation)
what pixel values approximate a triangle?

picture/微信截图_20220114150218

  • input : position of triangle vertices projected on screen
  • output : set of pixel values approximating triangle
a simple approach: sampling

evaluating a function at a point is sampling, we can discretize a function by sampling

for (int x = 0; x < xmax; ++x)
	output[x] = f(x);

sampling is a core idea in graphics, we sample time (1D), area (2D), direction (2D), volume (3D)

we can sample if each pixel center is inside triangle

picture/微信截图_20220114151354

  • rasterization = sampling a 2D indicator function

    for (int x = 0; x < xmax; ++x)
        for (int y = 0; y < ymax; ++y)
            image[x][y] = inside(tri, x + 0.5, y + 0.5); // pixel center
  • evaluating inside (tri, x, y)

    • how to judge a point inside?
      • three cross products
        • AB->BC->CA
      • edge cases
        • is this sample point covered by triangle 1, triangle 2, or both?
          • some software have different rules
    • how to make compute faster?
      • use a bounding box
  • in this class, we assume display pixels emit square of light

but rasterization will be lead to aliasing (jaggies)

picture/微信截图_20220114154310

antialiasing and Z-Buffering

sampling in graphics

  • photograph = sample image sensor plane
  • video = sample time

sampling artifacts -> (errors / mistakes / inaccuracies) in computer graphics

  • aliasing - sampling in space
  • moiré patterns in imaging - undersampling image
  • wagon wheel illusion (false motion) - sampling in time

behind the aliasing artifacts

  • signals are changing too fast (high frequency), but sampled too slowly

antialiasing idea

  • blurring (pre-filtering) before sampling
  • but sample then filter is WRONG!

picture/微信截图_20220114160649

but why?

  • why undersampling introduces aliasing?
  • why pre-filtering then sampling can do antialiasing?

frequency domain

cosine’s frequencies $cos2\pi f x$ where $f=\frac{1}{T}$

picture/微信截图_20220114182508

fourier transform
  • represent a function as a weighted sum of sines and cosines
graph LR
	1["spatial domain<br>f(x)"]--"fourier transform"-->2["frequency domian<br>F(ω)"]
	2--"inverse transform"-->1
Loading

$$\text{fourier transform}F(\omega)=\int^{\infty}_{-\infty} f(x)e^{-2\pi i\omega x}dx$$

$\text{inverse transform}f(x)=\int^{\infty}_{-\infty}F(\omega)e^{2\pi i \omega x}d\omega,\text{where }e^{ix}=\cos x+i \sin x$

  • higher frequencies need faster sampling, undersampling creates frequency aliases
  • two frequencies that are indistinguishable at a given sampling rate are called “aliases”
filtering = getting rid of certain frequency contents

picture/微信截图_20220114182913

picture/微信截图_20220114182935

picture/微信截图_20220114182955

picture/微信截图_20220114183236

picture/微信截图_20220114183303

filtering = convolution (= averaging)

convolution

picture/微信截图_20220114183618

  • convolution in the spatial domain is equal to multiplication in the frequency, and vice versa
  • filter by convolution in the spatial domain
  • transform to frequency domain (Fourier transform)
  • multiply by Fourier transform of convolution kernel
  • transform back to spatial domain (inverse Fourier)

picture/微信截图_20220114183930

picture/微信截图_20220114184105

picture/微信截图_20220114184146

picture/微信截图_20220114184205

Sampling = Repeating frequency contents

picture/微信截图_20220114184342

Aliasing = Mixed Frequency Contents

picture/微信截图_20220114184544

Antialiasing

how can we reduce aliasing error?
  • option 1 : increase sampling rate

    • essentially increasing the distance between replicas in the Fourier domain
    • higher resolution displays, sensors, framebuffers ...
    • but : costly & may need very high resolution
  • option 2 : antialiasing

    • making fourier contents “narrower” before repeating
    • i.e. filtering out high frequencies before sampling
antialiasing = Limiting, the repeating

picture/微信截图_20220114185110

antialiasing by averaging values in pixel area

solution :

  • convolve f(x,y) by a 1-pixel box-blur
    • recall : convolving = filtering = averaging
  • then sample at every pixel’s center

picture/微信截图_20220114185412

Antialiasing By Supersampling (MSAA)

picture/微信截图_20220114185550

picture/微信截图_20220114185643

picture/微信截图_20220114185706

picture/微信截图_20220114185726

picture/微信截图_20220114185804

picture/微信截图_20220114185804

picture/微信截图_20220114185839

No free lunch!

  • what’s the cost of MSAA?

Development Milestone

  • FXAA (fast approximate AA)
  • TAA (temporal AA)

Super resolution / super sampling

  • From low resolution to high resolution
  • Essentially still “not enough samples” problem
  • DLSS (Deep Learning Super Sampling)

Visibility / occlusion

painter’s algorithm

inspired by how painters paint, paint from back to front, overwrite in the framebuffer

requires sorting in depth (O(n log n)) for n triangles

can have unresolvable depth order

picture/微信截图_20220114191440

Z-buffer

  • store current min z-value for each sample (pixel)
  • needs an additional buffer for depth values
    • frame buffer stores color values
    • depth buffer (z-buffer) stores depth
  • for simplicity we suppose z is always positive (smaller z -> closer, larger z -> further)
Z-buffer algorithm

initialize depth buffer to $\infty$

during rasterization :

for (each triangle T)
	for (each sample (x,y,z) in T)
		if (z < zbuffer[x,y])		//closest sample so far
			framebuffer[x,y] rgb;	//update color
			zbuffer[x,y] = z;		//update depth
         else
         	;						//do nothing, this sample is occluded

picture/微信截图_20220114201126

complexity
  • O(n) for n triangles (assuming constant coverage)
    • why assume this state?
      • judge whether float values are equal is difficult
  • how is it possible to sort n triangles in linear time
    • it’s wrong, there is not sorting operation

Drawing triangles in different orders?

most important visibility algorithm

  • implemented in hardware for all GPUs

Shading

illumination, shading

Definition

In this course shading is the process of applying a material to an object

A Simple Shading Model (Blinn-Phong Reflectance Model)

Perceptual observations

picture/微信截图_20220131204840

Shading is Local (at a specific shading point)

picture/微信截图_20220131204904

No shadows will be generated! (shading ≠ shadow)

picture/微信截图_20220131205527

Diffuse Reflection
  • Light is scattered uniformly in all directions

    • surface color is the same for all viewing directions

      picture/微信截图_20220131205630

  • But how much light (energy) is received?

    • Lambert's cosine law

      picture/微信截图_20220131205738

picture/微信截图_20220131214632

Lambertian (Diffuse) Shading

picture/微信截图_20220131214915

Produces diffuse appearance :

picture/微信截图_20220131215656

Specular Term

Intensity depends on view direction

  • Bright near mirror reflection direction

picture/微信截图_20220131222835

$V$ close to mirror direction $\longleftrightarrow$ half vector near normal

  • Measure "near" by dot product of unit vectors

picture/微信截图_20220131222855

why there is a power "p"?

picture/微信截图_20220131224430

picture/微信截图_20220131224457

Ambient Term

shading that does not depend on anything

  • add constant color to account for disregarded illumination and fill in black shadows
  • this is approximate / fake!

picture/微信截图_20220131225323

Blinn-Phong Reflection Model

picture/微信截图_20220131225703

shading frequencies

picture/微信截图_20220131230731

shade each triangle (Flat shading)
  • triangle face is flat - one normal vector
  • not good for smooth surfaces

picture/微信截图_20220131231952

shade each vertex (Gouraud shading)
  • interpolate colors from vertices across triangle
  • each vertex has a normal vector (how?)

picture/微信截图_20220131232018

shade each pixel (Phong shading)
  • interpolate normal vectors across each triangle
  • computer full shading model at each pixel
  • not the Blinn-Phong Reflectance Model

picture/微信截图_20220131232417

picture/微信截图_20220131232438

Defining Per-Vertex Normal Vectors

picture/微信截图_20220131233756

picture/微信截图_20220131233819

graphics (Real-time Rendering) Pipeline

picture/微信截图_20220131234015

picture/微信截图_20220131234316

picture/微信截图_20220131234348

picture/微信截图_20220131234411

picture/微信截图_20220131234428

picture/微信截图_20220131234450

shader programs
  • program vertex and fragment processing stages
  • describe operation on a single vertex (or fragment)

picture/微信截图_20220201003333

picture/微信截图_20220201003356

graphics pipeline implementation: GPUs

GPUs: heterogeneous, multi-core processor

specialized processors for executing graphics pipeline computations

picture/微信截图_20220201010044

picture/微信截图_20220201010304

Texture Mapping

picture/微信截图_20220201010357

Surfaces are 2D

  • surface lives in 3D world space
  • every 3D surface point also has a place where it goes in the 2D image (texture)

picture/微信截图_20220201010603

picture/微信截图_20220201010630

picture/微信截图_20220201010749

picture/微信截图_20220201012713

picture/微信截图_20220201014313

picture/微信截图_20220201014321

picture/微信截图_20220201014345

Interpolation Across Triangles: Barycentric Coordinates

Why do we want to interpolate?

  • specify values at vertices
  • obtain smoothly varying values across triangles

What do we want to interpolate?

  • Texture coordinates, colors, normal vectors, ...

How do we interpolate?

  • Barycentric coordinates

picture/微信截图_20220201015032

picture/微信截图_20220201015212

picture/微信截图_20220201015221

picture/微信截图_20220201015229

picture/微信截图_20220201015330

picture/微信截图_20220201015339

Barycentric coordinates are not invariant under projection

Applying Textures

picture/微信截图_20220201015732

Texture Magnification

Easy case: What if the texture is too small?

picture/微信截图_20220201015915

Bilinear Interpolation

picture/微信截图_20220201020015

picture/微信截图_20220201020023

picture/微信截图_20220201020036

picture/微信截图_20220201020046

picture/微信截图_20220201020058

picture/微信截图_20220201020112

Bilinear interpolation usually gives pretty good results at reasonable costs

picture/微信截图_20220201020253

Hard case: What if the texture is too large?

picture/微信截图_20220201020535

picture/微信截图_20220201020643

picture/微信截图_20220201020725

Antialiasing: supersampling?

Will supersampling work?

  • yes, high quality, but costly
  • when highly minified, many texels in pixel footprint
  • signal frequency too large in a pixel
  • need even higher sampling frequency

Let's understand this problem in another way

  • what if we don't sample?
  • just need to get the average value within a range!

picture/微信截图_20220201021119

picture/微信截图_20220201021150

Mipmap: Allowing (fast, approx., square) range queries

picture/微信截图_20220201021343

picture/微信截图_20220201021407

picture/微信截图_20220201021423

picture/微信截图_20220201021443

picture/微信截图_20220201021503

picture/微信截图_20220201021521

picture/微信截图_20220201022030

picture/微信截图_20220201022046

limitations

picture/微信截图_20220201022143

picture/微信截图_20220201022152

picture/微信截图_20220201022201

Anisotropic Filtering: fix mipmap's overblur

picture/微信截图_20220201022247

picture/微信截图_20220201022406

picture/微信截图_20220201022426

Applications of textures

In modern GPUs, texture = memory + range query (filtering)

  • General method to bring data to fragment calculations

Many applications

  • Environment lighting
  • Store microgeometry
  • Procedural textures
  • Solid modeling
  • Volume rendering

picture/微信截图_20220201130907

picture/微信截图_20220201130930

picture/微信截图_20220201131008

picture/微信截图_20220201131022

picture/微信截图_20220201131033

picture/微信截图_20220201131116

Bump Mapping

picture/微信截图_20220201131127

picture/微信截图_20220201131138

How to perturb the normal (in flatland)

picture/微信截图_20220201132050

How to perturb the normal (in 3D)

picture/微信截图_20220201132138

Displacement Mapping

picture/微信截图_20220201132458

picture/微信截图_20220201132752

picture/微信截图_20220201132814

picture/微信截图_20220201132832

Geometry

Introduction

picture/微信截图_20220201133009

picture/微信截图_20220201133022

picture/微信截图_20220201133034

picture/微信截图_20220201133124

picture/微信截图_20220201133133

picture/微信截图_20220201133143

picture/微信截图_20220201133152

picture/微信截图_20220201133200

picture/微信截图_20220201133209

picture/微信截图_20220201133218

picture/微信截图_20220201133927

Implicit representations

picture/微信截图_20220201133938

picture/微信截图_20220201133948

Algebraic Surfaces

picture/微信截图_20220201133957

Constructive Solid Geometry

picture/微信截图_20220201134007

Distance Functions

picture/微信截图_20220201134015

picture/微信截图_20220201134024

Blending Distance Functions

picture/微信截图_20220201134034

picture/微信截图_20220201134044

Level Set Methods

picture/微信截图_20220201134052

picture/微信截图_20220201134101

picture/微信截图_20220201134109

Fractals

picture/微信截图_20220201134119

Pros & Cons

  • Pros
    • compact description (e.g., a function)
    • certain queries easy (inside object, distance of surface)
    • good for ray-to-surface intersection (more later)
    • for simple shapes, exact description / no sampling error
    • easy to handle changes in topology (e.g., fluid)
  • Cons
    • difficult to model complex shapes

Explicit representations

picture/微信截图_20220201142009

Point Cloud

picture/微信截图_20220201142018

Polygon Mesh

picture/微信截图_20220201142029

picture/微信截图_20220201142038

Curves

applications:

  • camera paths
  • animation curves
  • vector fonts
Bezier Curves

picture/微信截图_20220201153129

Evaluating Bezier Curves (de Casteljau Algorithm)

picture/微信截图_20220201153140

picture/微信截图_20220201153148

picture/微信截图_20220201153154

picture/微信截图_20220201153200

picture/微信截图_20220201153206

picture/微信截图_20220201163903

picture/微信截图_20220201163911

Evaluation Bezier Curves Algebraic Formula

picture/微信截图_20220201164101

picture/微信截图_20220201164108

picture/微信截图_20220201164118

picture/微信截图_20220201164128

picture/微信截图_20220201164136

picture/微信截图_20220201164143

picture/微信截图_20220201164150

Piecewise Bezier Curves

picture/微信截图_20220201164907

picture/微信截图_20220201164913

example: http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html

Continuity

picture/微信截图_20220201164933

picture/微信截图_20220201164942

picture/微信截图_20220201164949

picture/微信截图_20220201164959

picture/微信截图_20220201165008

In this course

Surfaces

picture/微信截图_20220201165738

picture/微信截图_20220201165746

Evaluating Bezier Surfaces

picture/微信截图_20220201165916

picture/微信截图_20220201165923

mesh operations

picture/微信截图_20220201165934

mesh subdivision (upsampling)

picture/微信截图_20220209134700

loop subdivision

picture/微信截图_20220209134909

picture/微信截图_20220209134918

picture/微信截图_20220209134926

picture/微信截图_20220209134935

picture/微信截图_20220209134942

catmull-clark subdivision

picture/微信截图_20220209134952

picture/微信截图_20220209135001

picture/微信截图_20220209135011

picture/微信截图_20220209135020

picture/微信截图_20220209135032

picture/微信截图_20220209135042

mesh simplification (downsampling)

picture/微信截图_20220209134718

picture/微信截图_20220209140248

picture/微信截图_20220209140254

picture/微信截图_20220209140304

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/08_Simplification.pdf

picture/微信截图_20220209140312

picture/微信截图_20220209140320

picture/微信截图_20220209140327

mesh regularization (same # of triangles)

picture/微信截图_20220209134728

Shadow Mapping

picture/微信截图_20220209140931

picture/微信截图_20220209140939

picture/微信截图_20220209140947

picture/微信截图_20220209140956

picture/微信截图_20220209141003

picture/微信截图_20220209141015

picture/微信截图_20220209141023

picture/微信截图_20220209141031

picture/微信截图_20220209141040

picture/微信截图_20220209141050

picture/微信截图_20220209141103

floating numbers' comparison is difficulty!

picture/微信截图_20220209141112

picture/微信截图_20220209141930

picture/微信截图_20220209141938

picture/微信截图_20220209141948

https://www.timeanddate.com/eclipse/umbra-shadow.html

Ray tracing

picture/微信截图_20220209142534

picture/微信截图_20220209142544

picture/微信截图_20220209142554

Basic Ray-Tracing Algorithm

picture/微信截图_20220209142922

picture/微信截图_20220209142933

picture/微信截图_20220209142958

picture/微信截图_20220209143006

picture/微信截图_20220209143013

picture/微信截图_20220209143023

picture/微信截图_20220209143030

picture/微信截图_20220209143037

picture/微信截图_20220209143044

picture/微信截图_20220209143051

picture/微信截图_20220209143058

picture/微信截图_20220209143105

Ray-Surface Intersection

picture/微信截图_20220209144455

picture/微信截图_20220209144503

picture/微信截图_20220209144510

picture/微信截图_20220209144518

picture/微信截图_20220209144526

picture/微信截图_20220209144533

picture/微信截图_20220209144541

picture/微信截图_20220209144550

picture/微信截图_20220209144557

Accelerating Ray-Surface Intersection

picture/微信截图_20220209144110

picture/微信截图_20220209144118

picture/微信截图_20220209144129

Bounding Volumes

picture/微信截图_20220209144150

picture/微信截图_20220209144206

picture/微信截图_20220209144222

picture/微信截图_20220209144230

picture/微信截图_20220209144238

picture/微信截图_20220209144247

Uniform Spatial Partitions (Grids)

picture/微信截图_20220209151115

picture/微信截图_20220209151124

picture/微信截图_20220209151131

picture/微信截图_20220209151139

picture/微信截图_20220209151146

picture/微信截图_20220209151154

picture/微信截图_20220209151201

picture/微信截图_20220209151210

picture/微信截图_20220209151219

Spatial Partitions

picture/微信截图_20220209151243

picture/微信截图_20220209151251

picture/微信截图_20220209151258

picture/微信截图_20220209151305

picture/微信截图_20220209151313

picture/微信截图_20220209151320

picture/微信截图_20220209151330

picture/微信截图_20220209151338

picture/微信截图_20220209151344

picture/微信截图_20220209151351

picture/微信截图_20220209151400

picture/微信截图_20220209151410

picture/微信截图_20220209151419

Object Partitions & Bounding Volume Hierarchy (BVH)

picture/微信截图_20220209151559

picture/微信截图_20220209151605

picture/微信截图_20220209151612

picture/微信截图_20220209151622

picture/微信截图_20220209151629

picture/微信截图_20220209151636

picture/微信截图_20220209151643

picture/微信截图_20220209151651

picture/微信截图_20220209151658

Basic radiometry

picture/微信截图_20220209151757

picture/微信截图_20220209151804

Radiant Energy and Flux (Power)

picture/微信截图_20220209151843

picture/微信截图_20220209151851

picture/微信截图_20220209151858

Radiant Intensity

picture/微信截图_20220209151932

picture/微信截图_20220209151940

picture/微信截图_20220209151949

picture/微信截图_20220209151957

picture/微信截图_20220209152003

picture/微信截图_20220209152010

picture/微信截图_20220209152017

picture/微信截图_20220209152258

picture/微信截图_20220209152305

Irradiance

picture/微信截图_20220209152339

picture/微信截图_20220209152347

picture/微信截图_20220209152354

picture/微信截图_20220209152405

The differential solid angle is not change, so what really falloff is irradiance neither intensity.

Radiance

picture/微信截图_20220209152435

picture/微信截图_20220209152443

picture/微信截图_20220209152451

picture/微信截图_20220209152458

picture/微信截图_20220209152504

Irradiance VS Radiance

picture/微信截图_20220209152511

Bidirectional Reflectance Distribution Function (BRDF)

picture/微信截图_20220209152644

picture/微信截图_20220209152651

picture/微信截图_20220209152659

picture/微信截图_20220209152705

picture/微信截图_20220209152713

Light transport

Understanding the rendering equation

picture/微信截图_20220209152755

picture/微信截图_20220209152803

picture/微信截图_20220209152816

picture/微信截图_20220209152825

picture/微信截图_20220209152833

picture/微信截图_20220209152842

picture/微信截图_20220209152849

picture/微信截图_20220209152859

picture/微信截图_20220209152905

Global illumination

picture/微信截图_20220209152913

picture/微信截图_20220209152932

picture/微信截图_20220209152944

picture/微信截图_20220209152954

picture/微信截图_20220209153005

picture/微信截图_20220209153016

picture/微信截图_20220209153026

Probability Review

picture/微信截图_20220209153130

picture/微信截图_20220209153137

picture/微信截图_20220209153144

picture/微信截图_20220209153150

picture/微信截图_20220209153156

Monte Carlo Integration

picture/微信截图_20220210190813

picture/微信截图_20220210190823

picture/微信截图_20220210190835

picture/微信截图_20220210190846

picture/微信截图_20220210190853

picture/微信截图_20220210190902

picture/微信截图_20220210190910

picture/微信截图_20220210190920

Path Tracing

picture/微信截图_20220210191004

picture/微信截图_20220210191014

picture/微信截图_20220210201019

picture/微信截图_20220210201027

picture/微信截图_20220210201037

picture/微信截图_20220210201046

picture/微信截图_20220210201055

picture/微信截图_20220210201110

picture/微信截图_20220210201118

picture/微信截图_20220210201125

picture/微信截图_20220210201134

picture/微信截图_20220210201150

picture/微信截图_20220210201158

picture/微信截图_20220210201206

picture/微信截图_20220210201214

picture/微信截图_20220210201222

picture/微信截图_20220210201232

picture/微信截图_20220210201241

picture/微信截图_20220210201249

picture/微信截图_20220210201302

picture/微信截图_20220210201311

picture/微信截图_20220210201320

picture/微信截图_20220210201330

picture/微信截图_20220210201338

picture/微信截图_20220210201356

picture/微信截图_20220210201407

picture/微信截图_20220210201415

picture/微信截图_20220210201423

picture/微信截图_20220210201433

picture/微信截图_20220210201444

picture/微信截图_20220210201457

http://www.graphics.cornell.edu/online/box/compare.html

picture/微信截图_20220210201620

picture/微信截图_20220210201629

picture/微信截图_20220210201637

Materials and Appearances

picture/微信截图_20220210210841

picture/微信截图_20220210210851

Material == BRDF

picture/微信截图_20220210210859

picture/微信截图_20220210210950

picture/微信截图_20220210210957

picture/微信截图_20220210211003

picture/微信截图_20220210211014

picture/微信截图_20220210211022

picture/微信截图_20220210211033

picture/微信截图_20220210211047

picture/微信截图_20220210211056

picture/微信截图_20220210211106

picture/微信截图_20220210211114

picture/微信截图_20220210211123

picture/微信截图_20220210211132

picture/微信截图_20220210211140

picture/微信截图_20220210211149

picture/微信截图_20220210211157

picture/微信截图_20220210211205

picture/微信截图_20220210211213

Microfacet Material

picture/微信截图_20220210212942

picture/微信截图_20220210212952

picture/微信截图_20220210213001

picture/微信截图_20220210213009

picture/微信截图_20220210213018

picture/微信截图_20220210213029

picture/微信截图_20220210213037

picture/微信截图_20220210213045

picture/微信截图_20220210213128

picture/微信截图_20220210213139

picture/微信截图_20220210213154

picture/微信截图_20220210213204

picture/微信截图_20220210213213

picture/微信截图_20220210213221

picture/微信截图_20220210213231

Measuring BRDFs

picture/微信截图_20220210213336

picture/微信截图_20220210213432

picture/微信截图_20220210213445

picture/微信截图_20220210213513

picture/微信截图_20220210213522

picture/微信截图_20220210213530

picture/微信截图_20220210213540

Advanced Light Transport

picture/微信截图_20220210215306

Unbiased light transport methods

picture/微信截图_20220210215314

picture/微信截图_20220210215321

picture/微信截图_20220210215330

picture/微信截图_20220210215338

picture/微信截图_20220210215346

picture/微信截图_20220210215355

Biased light transport methods

picture/微信截图_20220210215403

picture/微信截图_20220210215411

picture/微信截图_20220210215423

picture/微信截图_20220210215438

picture/微信截图_20220210215445

picture/微信截图_20220210215455

Instant radiosity (VPL / many light methods)

picture/微信截图_20220210215505

picture/微信截图_20220210215518

Advanced Appearance Modeling

picture/微信截图_20220210215613

Non-surface models

picture/微信截图_20220210215705

picture/微信截图_20220210215716

picture/微信截图_20220210215726

picture/微信截图_20220210215736

picture/微信截图_20220210215746

picture/微信截图_20220210215757

picture/微信截图_20220210215811

picture/微信截图_20220210215823

picture/微信截图_20220210215832

picture/微信截图_20220210215839

picture/微信截图_20220210215848

picture/微信截图_20220210215856

picture/微信截图_20220210215906

picture/微信截图_20220210215924

picture/微信截图_20220210215934

picture/微信截图_20220210215944

picture/微信截图_20220210220004

picture/微信截图_20220210220013

picture/微信截图_20220210220027

picture/微信截图_20220210220036

picture/微信截图_20220210220048

picture/微信截图_20220210220054

picture/微信截图_20220210220102

picture/微信截图_20220210220112

picture/微信截图_20220210220123

picture/微信截图_20220210220132

picture/微信截图_20220210220140

picture/微信截图_20220210220150

picture/微信截图_20220210220159

picture/微信截图_20220210220209

Surface models

picture/微信截图_20220210220415

picture/微信截图_20220210220423

picture/微信截图_20220210220431

picture/微信截图_20220210220439

picture/微信截图_20220210220446

picture/微信截图_20220210220454

picture/微信截图_20220210220502

picture/微信截图_20220210220513

picture/微信截图_20220210220521

picture/微信截图_20220210220536

picture/微信截图_20220210220601

picture/微信截图_20220210220614

picture/微信截图_20220210220623

picture/微信截图_20220210220631

picture/微信截图_20220210220643

picture/微信截图_20220210220653

picture/微信截图_20220210220704

picture/微信截图_20220210220717

picture/微信截图_20220210220727

picture/微信截图_20220210220739

picture/微信截图_20220210220748

picture/微信截图_20220210220756

picture/微信截图_20220210220803

picture/微信截图_20220210220810

picture/微信截图_20220210220819

picture/微信截图_20220210220834

picture/微信截图_20220210220844

picture/微信截图_20220210220855

picture/微信截图_20220210220903

picture/微信截图_20220210220911

picture/微信截图_20220210220920

picture/微信截图_20220210220929

picture/微信截图_20220210220948

picture/微信截图_20220210220959

picture/微信截图_20220210221009

picture/微信截图_20220210221019

picture/微信截图_20220210221028

picture/微信截图_20220210221036

picture/微信截图_20220210221045

picture/微信截图_20220210221059

picture/微信截图_20220210221115

picture/微信截图_20220210221123

Procedural appearance

picture/微信截图_20220210221758

picture/微信截图_20220210221807

picture/微信截图_20220210221817

picture/微信截图_20220210221824

picture/微信截图_20220210221833

picture/微信截图_20220210221842

picture/微信截图_20220210221851

Cameras, Lenses and Light Fields

Imaging = Synthesis + Capture

picture/微信截图_20220211001147

picture/微信截图_20220211001157

picture/微信截图_20220211001212

picture/微信截图_20220211001222

picture/微信截图_20220211001230

picture/微信截图_20220211001242

Pinhole Image Formation

picture/微信截图_20220211001329

picture/微信截图_20220211001355

picture/微信截图_20220211001409

Filed of View (FOV)

picture/微信截图_20220211001450

picture/微信截图_20220211001458

picture/微信截图_20220211001505

picture/微信截图_20220211001523

picture/微信截图_20220211001531

picture/微信截图_20220211001540

Exposure

picture/微信截图_20220211001608

picture/微信截图_20220211001621

picture/微信截图_20220211001629

picture/微信截图_20220211001635

picture/微信截图_20220211001642

picture/微信截图_20220211001650

picture/微信截图_20220211001658

picture/微信截图_20220211001706

picture/微信截图_20220211001714

picture/微信截图_20220211001722

picture/微信截图_20220211001732

Fast and Slow Photography

picture/微信截图_20220211001817

picture/微信截图_20220211001828

picture/微信截图_20220211001840

picture/微信截图_20220211001849

picture/微信截图_20220211001858

Thin Lens Approximation

picture/微信截图_20220211001937

picture/微信截图_20220211001944

picture/微信截图_20220211001954

picture/微信截图_20220211002002

picture/微信截图_20220211002010

picture/微信截图_20220211002016

picture/微信截图_20220211002023

picture/微信截图_20220211002030

picture/微信截图_20220211002038

http://graphics.stanford.edu/courses/cs178-10/applets/gaussian.html

Defocus Blur

picture/微信截图_20220211002116

picture/微信截图_20220211002125

picture/微信截图_20220211002133

picture/微信截图_20220211002139

picture/微信截图_20220211002146

Ray Tracing Ideal Thin Lenses

picture/微信截图_20220211002221

picture/微信截图_20220211002228

picture/微信截图_20220211002235

Depth of Field

picture/微信截图_20220211002309

picture/微信截图_20220211002317

picture/微信截图_20220211002325

picture/微信截图_20220211002335

http://graphics.stanford.edu/courses/cs178/applets/dof.html

Light Field / Lumigraph

picture/微信截图_20220211024610

picture/微信截图_20220211024620

picture/微信截图_20220211024628

picture/微信截图_20220211024634

picture/微信截图_20220211024642

picture/微信截图_20220211024650

picture/微信截图_20220211024657

picture/微信截图_20220211024705

picture/微信截图_20220211024724

picture/微信截图_20220211024732

picture/微信截图_20220211024738

picture/微信截图_20220211024745

picture/微信截图_20220211024755

picture/微信截图_20220211024803

picture/微信截图_20220211024810

picture/微信截图_20220211024817

picture/微信截图_20220211024824

picture/微信截图_20220211024832

picture/微信截图_20220211024843

picture/微信截图_20220211024851

picture/微信截图_20220211024902

Light Field Camera

picture/微信截图_20220211025056

picture/微信截图_20220211025104

picture/微信截图_20220211025114

picture/微信截图_20220211025124

picture/微信截图_20220211025133

picture/微信截图_20220211025141

picture/微信截图_20220211025149

picture/微信截图_20220211025156

picture/微信截图_20220211025204

picture/微信截图_20220211025211

Color

What is color ?

Physical Basis of Color

picture/微信截图_20220211025248

picture/微信截图_20220211025254

picture/微信截图_20220211025301

picture/微信截图_20220211025307

picture/微信截图_20220211025314

picture/微信截图_20220211025321

picture/微信截图_20220211025414

Biological Basis of Color

picture/微信截图_20220211025456

picture/微信截图_20220211025504

picture/微信截图_20220211025511

picture/微信截图_20220211025518

Color perception

Tristimulus Theory of Color

picture/微信截图_20220211025559

picture/微信截图_20220211025606

Metamerism (同色异谱)

picture/微信截图_20220211025653

picture/微信截图_20220211025659

picture/微信截图_20220211025708

Color reproduction / matching

picture/微信截图_20220211025821

picture/微信截图_20220211025828

picture/微信截图_20220211025833

picture/微信截图_20220211025840

picture/微信截图_20220211025847

picture/微信截图_20220211025853

picture/微信截图_20220211025859

picture/微信截图_20220211025905

picture/微信截图_20220211025912

picture/微信截图_20220211025919

picture/微信截图_20220211025927

picture/微信截图_20220211025934

picture/微信截图_20220211025941

Color space

picture/微信截图_20220211030007

picture/微信截图_20220211030013

picture/微信截图_20220211030020

picture/微信截图_20220211030031

picture/微信截图_20220211030037

picture/微信截图_20220211030043

Perceptually Organized Color Spaces

picture/微信截图_20220211030122

picture/微信截图_20220211030129

picture/微信截图_20220211030136

picture/微信截图_20220211030142

picture/微信截图_20220211030149

picture/微信截图_20220211030204

picture/微信截图_20220211030213

picture/微信截图_20220211030221

picture/微信截图_20220211030230

picture/微信截图_20220211030236

picture/微信截图_20220211030243

picture/微信截图_20220211030251

picture/微信截图_20220211030259

picture/微信截图_20220211030305

picture/微信截图_20220211030312

picture/微信截图_20220211030319

picture/微信截图_20220211030326

picture/微信截图_20220211030332

Animation

picture/微信截图_20220211184525

Historical Points in Animation

picture/微信截图_20220211184551

picture/微信截图_20220211184600

picture/微信截图_20220211184608

picture/微信截图_20220211184616

picture/微信截图_20220211184624

picture/微信截图_20220211184631

picture/微信截图_20220211184639

picture/微信截图_20220211184646

picture/微信截图_20220211184657

picture/微信截图_20220211184709

Keyframe Animation

picture/微信截图_20220211184759

picture/微信截图_20220211184805

picture/微信截图_20220211184812

Physical Simulation

picture/微信截图_20220211184838

picture/微信截图_20220211184844

picture/微信截图_20220211184852

picture/微信截图_20220211184859

Mass Spring System: Example of Modeling a Dynamic System

picture/微信截图_20220211185011

picture/微信截图_20220212000421

picture/微信截图_20220211185029

picture/微信截图_20220211185034

picture/微信截图_20220211185040

picture/微信截图_20220211185046

picture/微信截图_20220211185052

picture/微信截图_20220211185059

picture/微信截图_20220211185105

picture/微信截图_20220211185111

picture/微信截图_20220211185118

picture/微信截图_20220211185126

picture/微信截图_20220211185136

picture/微信截图_20220211185143

Particle Systems

picture/微信截图_20220211200403

picture/微信截图_20220211200410

picture/微信截图_20220211200416

picture/微信截图_20220211200424

picture/微信截图_20220211200432

picture/微信截图_20220211200440

picture/微信截图_20220211200450

picture/微信截图_20220211200457

picture/微信截图_20220211200510

Kinematics

Forward Kinematics

picture/微信截图_20220211200546

picture/微信截图_20220211200558

picture/微信截图_20220211200606

picture/微信截图_20220211200613

picture/微信截图_20220211200623

picture/微信截图_20220211200630

Inverse Kinematics

picture/微信截图_20220211200705

picture/微信截图_20220211200711

picture/微信截图_20220211200720

picture/微信截图_20220211200726

picture/微信截图_20220211200732

picture/微信截图_20220211200739

picture/微信截图_20220211200745

picture/微信截图_20220211200753

Rigging

picture/微信截图_20220211200823

picture/微信截图_20220211200830

picture/微信截图_20220211200843

picture/微信截图_20220211200853

Motion Capture

picture/微信截图_20220211200925

picture/微信截图_20220211200932

picture/微信截图_20220211200944

picture/微信截图_20220211200954

picture/微信截图_20220211201002

picture/微信截图_20220211201009

picture/微信截图_20220211201021

picture/微信截图_20220211201029

picture/微信截图_20220211201043

picture/微信截图_20220211201103

Simulation

Single particle simulation

picture/微信截图_20220211201354

picture/微信截图_20220211202432

picture/微信截图_20220211202439

picture/微信截图_20220211202444

picture/微信截图_20220211202452

picture/微信截图_20220211202500

picture/微信截图_20220211202507

picture/微信截图_20220211202516

Combating Instability

picture/微信截图_20220211202651

picture/微信截图_20220211202658

picture/微信截图_20220211202706

picture/微信截图_20220211202713

picture/微信截图_20220211202721

picture/微信截图_20220211202727

picture/微信截图_20220211202734

picture/微信截图_20220211202740

picture/微信截图_20220211202747

Rigid body simulation

picture/微信截图_20220211202753

Fluid simulation

picture/微信截图_20220211202914

picture/微信截图_20220211202920

picture/微信截图_20220211202928

About

It's a notebook of games-101, which instructd by lingqi yan in 2020.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published