We propose a novel targeted adversarial attack for multiple well-known handcrafted pipelines and datasets. Our attack is able to match an image with any given target image which can be completely different from the original image. Our approach provides a trade-off between effectiveness and imperceptibility, and outperforms the baselines on both metrics
Guess.Game.mp4
selective.average.mp4
Decision.based.attack.mp4
comparison.mp4
FABMAP.Attack.mp4
colmap.attack.mp4
attack.tracking.mp4
- adversarial-robustness-toolbox 1.9.1
- opencv-contrib-python 3.4.2.17
- PCV
- torch
- visvis
- BOW Matlab Code
- Folder1: Base Images
- fallbase.jpg
- springbase.jpg
- summerbase.jpg
- winterbase.jpg
- Folder2: Target Classes
- Fall
- 1.jpg
- 2.jpg
- ...
- Spring
- 1.jpg
- 2.jpg
- ...
- Summer
- 1.jpg
- 2.jpg
- ...
- Winter
- 1.jpg
- 2.jpg
- ...
- Fall
- Folder3: Save Folder
- Fall
- 1.jpg
- 2.jpg
- ...
- Spring
- 1.jpg
- 2.jpg
- ...
- Summer
- 1.jpg
- 2.jpg
- ...
- Winter
- 1.jpg
- 2.jpg
- ...
- Fall