Skip to content

Commit

Permalink
Fix math (#21)
Browse files Browse the repository at this point in the history
Determinant of Jacobian / size factor was miscalculated if Jacobian
is not square, i.e. curve / manifold. Fixed.
  • Loading branch information
ahojukka5 authored Feb 10, 2018
1 parent d54f598 commit 99b2b0d
Show file tree
Hide file tree
Showing 2 changed files with 75 additions and 18 deletions.
55 changes: 38 additions & 17 deletions src/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -75,8 +75,16 @@ jacobian(B, X, (0.0, 0.0))
"""
function jacobian(B, X, xi)
dB = eval_dbasis(B, xi)
nbasis = length(B)
J = sum(kron(dB[:,i], X[i]') for i=1:nbasis)
dim1, nbasis = size(B)
dim2 = length(first(X))
J = zeros(dim1, dim2)
for i=1:dim1
for j=1:dim2
for k=1:nbasis
J[i,j] += dB[i,k]*X[k][j]
end
end
end
return J
end

Expand Down Expand Up @@ -205,19 +213,28 @@ function eval_basis!{B}(bi::BasisInfo{B}, X, xi)
eval_basis!(B, bi.N, xi)
eval_dbasis!(B, bi.dN, xi)

dim1, nbasis = size(B)
dim2 = length(first(X))
dims = (dim1, dim2)
if size(bi.J) != dims
bi.J = zeros(dim1, dim2)
else
fill!(bi.J, 0.0)
end

# calculate Jacobian
fill!(bi.J, 0.0)
dim, nbasis = size(B)
for i=1:nbasis
for j=1:dim
for k=1:dim
@inbounds bi.J[j,k] += bi.dN[j,i]*X[i][k]

for i=1:dim1
for j=1:dim2
for k=1:nbasis
bi.J[i,j] += bi.dN[i,k]*X[k][j]
end
end
end

# calculate inverse and determinant of Jacobian
if dim == 3
# calculate determinant of Jacobian + gradient operator

if dims == (3, 3)
a, b, c, d, e, f, g, h, i = bi.J
bi.detJ = a*(e*i-f*h) + b*(f*g-d*i) + c*(d*h-e*g)
bi.invJ[1] = 1.0 / bi.detJ * (e*i - f*h)
Expand All @@ -229,20 +246,24 @@ function eval_basis!{B}(bi::BasisInfo{B}, X, xi)
bi.invJ[7] = 1.0 / bi.detJ * (d*h - e*g)
bi.invJ[8] = 1.0 / bi.detJ * (b*g - a*h)
bi.invJ[9] = 1.0 / bi.detJ * (a*e - b*d)
elseif dim == 2
A_mul_B!(bi.grad, bi.invJ, bi.dN)
elseif dims == (2, 2)
a, b, c, d = bi.J
bi.detJ = a*d - b*c
bi.invJ[1] = 1.0 / bi.detJ * d
bi.invJ[2] = 1.0 / bi.detJ * -b
bi.invJ[3] = 1.0 / bi.detJ * -c
bi.invJ[4] = 1.0 / bi.detJ * a
else
@assert dim == 1
bi.detJ = bi.J[1,1]
bi.invJ[1,1] = 1.0 / bi.detJ
A_mul_B!(bi.grad, bi.invJ, bi.dN)
elseif dims == (1, 1)
bi.detJ = bi.J[1]
bi.invJ[1] = 1.0 / bi.detJ
bi.grad = bi.invJ * bi.dN
elseif dim1 == 1 # curve
bi.detJ = norm(bi.J)
elseif dim1 == 2 # manifold
bi.detJ = norm(cross(bi.J[1,:], bi.J[2,:]))
end

A_mul_B!(bi.grad, bi.invJ, bi.dN)

return bi
end
Expand Down
38 changes: 37 additions & 1 deletion test/test_math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,43 @@ end
u = ((0.0, 0.0), (1.0, -1.0), (2.0, 3.0), (0.0, 0.0))
gradu = zeros(2, 2)
grad!(B, gradu, u)
println(gradu)
gradu_expected = [1.5 0.5; 1.0 2.0]
@test isapprox(gradu, gradu_expected)
end

@testset "test curves" begin
bi = BasisInfo(Seg2)
X1 = ((0.0,0.0,0.0), (1.0,0.0,0.0))
X2 = ((0.0,0.0,0.0), (0.0,1.0,0.0))
X3 = ((0.0,0.0,0.0), (0.0,0.0,1.0))
xi = (0.0, 0.0)
eval_basis!(bi, X1, xi)
@test isapprox(bi.detJ, 0.5)
eval_basis!(bi, X2, xi)
@test isapprox(bi.detJ, 0.5)
eval_basis!(bi, X3, xi)
@test isapprox(bi.detJ, 0.5)
@test isapprox(jacobian(Seg2(), X1, xi), [0.5 0.0 0.0])
@test isapprox(jacobian(Seg2(), X2, xi), [0.0 0.5 0.0])
@test isapprox(jacobian(Seg2(), X3, xi), [0.0 0.0 0.5])
end

@testset "test manifolds" begin
bi = BasisInfo(Quad4)
X1 = ((0.0,0.0,0.0), (1.0,0.0,0.0), (1.0,1.0,0.0), (0.0,1.0,0.0))
X2 = ((0.0,0.0,0.0), (0.0,1.0,0.0), (0.0,1.0,1.0), (0.0,0.0,1.0))
X3 = ((0.0,0.0,0.0), (0.0,0.0,1.0), (1.0,0.0,1.0), (1.0,0.0,0.0))
xi = (0.0, 0.0)
eval_basis!(bi, X1, xi)
@test isapprox(bi.detJ, 0.25)
eval_basis!(bi, X2, xi)
@test isapprox(bi.detJ, 0.25)
eval_basis!(bi, X3, xi)
@test isapprox(bi.detJ, 0.25)
J1 = jacobian(Quad4(), X1, xi)
J2 = jacobian(Quad4(), X2, xi)
J3 = jacobian(Quad4(), X3, xi)
@test isapprox(J1, [0.5 0.0 0.0; 0.0 0.5 0.0])
@test isapprox(J2, [0.0 0.5 0.0; 0.0 0.0 0.5])
@test isapprox(J3, [0.0 0.0 0.5; 0.5 0.0 0.0])
end

0 comments on commit 99b2b0d

Please sign in to comment.