Skip to content

Latest commit

 

History

History
 
 

difacto

Distributed Factorization Machine

For a p dimension example x, FM models the data by

hat_y

where w_i denotes by the i-th element of the p-length vector w, and v_i denotes by the i-th row of the p-by-k matrix V.

Given training data pairs (x,y), FM learns the model w and V by solving the following objective:

obj

Here is the loss function such as logistic loss.

Quick start

sh run_local.sh

Dump format

key    size of (w+V)    w    V    sqc_grad for w  
eg: (embedding dim = 5) 
-2305843009213693952    6       -0.03293        -0.0278837      0.0185506       0.0244256       0.0273103       0.0175875       9.58451  
-4611686018427387904    6       -0.0236518      -0.00644252     0.015258        0.0128172       0.00233367      0.00965392      13.9504  
4971973988617027584     6       -0.0430204      -0.0335342      0.033125        0.026836        0.0449869       0.0152602       42.607  
-8718968878589280256    6       0.0254016       0.0383491       -0.0410308      -0.0369674      -0.0393771      -0.0312762      125.593  
2738188573441261568     6       -0.0487091      -0.0535223      0.0439216       0.0499866       0.0387711       0.0369372       22.7477  

More