forked from CNevd/Difacto_DMLC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasync_sgd.h
458 lines (395 loc) · 12.4 KB
/
async_sgd.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#pragma once
#include "progress.h"
#include "config.pb.h"
#include "loss.h"
#include "base/localizer.h"
#include "solver/minibatch_solver.h"
namespace dmlc {
namespace difacto {
/**
* \brief the scheduler for async SGD
*/
class AsyncScheduler : public solver::MinibatchScheduler {
public:
AsyncScheduler(const Config& conf) : conf_(conf) {
if (conf_.early_stop()) {
CHECK(conf_.val_data().size()) << "early stop needs validation dataset";
}
Init(conf);
}
virtual ~AsyncScheduler() { }
virtual std::string ProgHeader() { return Progress::HeadStr(); }
virtual std::string ProgString(const solver::Progress& prog) {
prog_.data = prog;
return prog_.PrintStr();
}
virtual bool Stop(const Progress& cur, bool train) {
double cur_objv = cur.objv() / cur.new_ex();
if (train) {
if (conf_.has_max_objv() && cur_objv > conf_.max_objv()) {
return true;
}
} else {
double diff = pre_val_objv_ - cur_objv;
pre_val_objv_ = cur_objv;
if (conf_.early_stop() && diff < conf_.min_objv_decr()) {
std::cout << "The decrease of validation objective "
<< "is smaller than the minimal requirement: "
<< diff << " vs " << conf_.min_objv_decr()
<< std::endl;
return true;
}
}
return false;
}
private:
Progress prog_;
Config conf_;
double pre_val_objv_ = 100;
};
using FeaID = ps::Key;
template <typename T> using Blob = ps::Blob<T>;
static const int kPushFeaCnt = 1;
/**
* \brief the base sgd handle
*/
struct ISGDHandle {
ISGDHandle() { ns_ = ps::NodeInfo::NumServers(); }
inline void Start(bool push, int timestamp, int cmd, void* msg) {
push_count = (push && (cmd == kPushFeaCnt)) ? true : false;
perf_.Start(push, cmd);
}
inline void Report() {
// reduce communication frequency
++ ct_;
if (ct_ >= ns_ && reporter) {
Progress prog; prog.new_w() = new_w; prog.new_V() = new_V; reporter(prog);
new_w = 0; new_V = 0;ct_ = 0;
}
}
inline void Finish() { Report(); perf_.Stop(); }
// for w
float lambda_l1 = 0, lambda_l2 = 0;
float alpha = .01, beta = 1;
// for V
struct Embedding {
int dim = 0;
unsigned thr;
float lambda_l1 = 0, lambda_l2 = 0;
float alpha = .01, beta = 1;
float V_min = -.01, V_max = .01;
};
Embedding V;
bool l1_shrk;
// statistic
bool push_count;
static int64_t new_w;
static int64_t new_V;
std::function<void(const Progress& prog)> reporter;
void Load(Stream* fi) { }
void Save(Stream *fo) const { }
private:
// performance monitor and logger
class Perf {
public:
void Start(bool push, int cmd) {
time_[0] = GetTime();
i_ = push ? ((cmd == kPushFeaCnt) ? 1 : 2) : 3;
}
void Stop() {
time_[i_] += GetTime() - time_[0];
++ count_[i_]; ++ count_[0];
if ((count_[0] % disp_) == 0) {
LOG(INFO) << "push feacnt: " << count_[1] << " x " << time_[1]/count_[1]
<< ", push grad: " << count_[2] << " x " << time_[2]/count_[2]
<< ", pull: " << count_[3] << " x " << time_[3]/count_[3];
}
}
private:
std::array<double, 4> time_{};
std::array<int, 4> count_{};
int i_ = 0, disp_ = ps::NodeInfo::NumWorkers() * 10;
} perf_;
int ct_ = 0, ns_ = 0;
};
/**
* \brief value stored on server nodes
*/
struct AdaGradEntry {
AdaGradEntry() { }
~AdaGradEntry() { Clear(); }
inline void Clear() {
if ( size > 1 ) { delete [] w; delete [] sqc_grad; }
size = 0; w = NULL; sqc_grad = NULL;
}
inline void Resize(int n) {
if (n < size) { size = n; return; }
float* new_w = new float[n]; float* new_cg = new float[n+1];
if (size == 1) {
new_w[0] = w_0(); new_cg[0] = sqc_grad_0(); new_cg[1] = z_0();
} else {
memcpy(new_w, w, size * sizeof(float));
memcpy(new_cg, sqc_grad, (size+1) * sizeof(float));
Clear();
}
w = new_w; sqc_grad = new_cg; size = n;
}
inline float& w_0() { return size == 1 ? *(float *)&w : w[0]; }
inline float w_0() const { return size == 1 ? *(float *)&w : w[0]; }
inline float& sqc_grad_0() {
return size == 1 ? *(float *)&sqc_grad : sqc_grad[0];
}
inline float& z_0() {
return size == 1 ? *(((float *)&sqc_grad)+1) : sqc_grad[1];
}
void Load(Stream* fi) {
fi->Read(&size, sizeof(size)) ;
if (size == 1) {
fi->Read(&w, sizeof(float*));
fi->Read(&sqc_grad, sizeof(float*));
} else {
w = new float[size];
sqc_grad = new float[size+1];
fi->Read(w, sizeof(float)*size);
fi->Read(sqc_grad, sizeof(float)*(size+1));
ISGDHandle::new_V += size - 1;
}
if (w_0() != 0) ++ ISGDHandle::new_w;
}
void Save(Stream *fo) const {
fo->Write(&size, sizeof(size));
if (size == 1) {
fo->Write(&w, sizeof(float*));
fo->Write(&sqc_grad, sizeof(float*));
} else {
fo->Write(w, sizeof(float)*size);
fo->Write(sqc_grad, sizeof(float)*(size+1));
}
}
bool Empty() const { return (w_0() == 0 && size == 1); }
/// #appearence of this feature in the data
unsigned fea_cnt = 0;
/// length of w. if size == 1, then using w itself to store the value to save
/// memory and avoid unnecessary new (see w_0())
int size = 1;
/// w and V
float *w = NULL;
/// square root of the cumulative gradient
float *sqc_grad = NULL;
};
/**
* \brief model updater
*/
struct AdaGradHandle : public ISGDHandle {
inline void Push(FeaID key, Blob<const float> recv, AdaGradEntry& val) {
if (push_count) {
val.fea_cnt += (unsigned) recv[0];
Resize(val);
} else {
CHECK_LE(recv.size, (size_t)val.size);
CHECK_GE(recv.size, (size_t)0);
// update w
UpdateW(val, recv[0]);
// update V
if (recv.size > 1) {
UpdateV(val.w+1, val.sqc_grad+2, recv.data+1, recv.size-1);
}
}
}
inline void Pull(FeaID key, const AdaGradEntry& val, Blob<float>& send) {
float w0 = val.w_0();
if (val.size == 1 || (l1_shrk && (w0 == 0))) {
CHECK_GT(send.size, (size_t)0);
send[0] = w0;
send.size = 1;
} else {
send.data = val.w;
send.size = val.size;
}
}
/// \brief resize if necessary
inline void Resize(AdaGradEntry& val) {
// resize the larger dim first to avoid double resize
if (val.fea_cnt > V.thr && val.size < V.dim + 1 &&
(!l1_shrk || val.w_0() != 0)) {
int old_siz = val.size;
val.Resize(V.dim + 1);
for (int j = old_siz; j < val.size; ++j) {
val.w[j] = rand() / (float) RAND_MAX * (V.V_max - V.V_min) + V.V_min;
val.sqc_grad[j+1] = 0;
}
new_V += val.size - old_siz;
}
}
// ftrl
inline void UpdateW(AdaGradEntry& val, float g) {
float w = val.w_0();
g += lambda_l2 * w;
float cg = val.sqc_grad_0();
float cg_new = sqrt( cg * cg + g * g );
val.sqc_grad_0() = cg_new;
val.z_0() -= g - (cg_new - cg) / alpha * w;
float z = val.z_0();
float l1 = lambda_l1;
if (z <= l1 && z >= - l1) {
val.w_0() = 0;
} else {
float eta = (beta + cg_new) / alpha;
val.w_0() = (z > 0 ? z - l1 : z + l1) / eta;
}
if (w == 0 && val.w_0() != 0) {
++ new_w; Resize(val);
} else if (w != 0 && val.w_0() == 0) {
-- new_w;
}
}
// adagrad
inline void UpdateV(float* w, float* cg, float const* g, int n) {
for (int i = 0; i < n; ++i) {
float grad = g[i] + V.lambda_l2 * w[i];
cg[i] = sqrt(cg[i] * cg[i] + grad * grad);
float eta = V.alpha / ( cg[i] + V.beta );
w[i] -= eta * grad;
}
}
};
class AsyncServer : public solver::MinibatchServer {
public:
AsyncServer(const Config& conf) : conf_(conf) {
using Server = ps::OnlineServer<float, AdaGradEntry, AdaGradHandle>;
AdaGradHandle h;
h.reporter = [this](const Progress& prog) { ReportToScheduler(prog.data); };
// for w
h.alpha = conf.lr_eta();
h.beta = conf.lr_beta();
h.lambda_l1 = conf.lambda_l1();
h.lambda_l2 = conf.lambda_l2();
h.l1_shrk = conf.l1_shrk();
// for V
if (conf.embedding_size() > 0) {
const auto& c = conf.embedding(0);
h.V.dim = c.dim();
h.V.thr = (unsigned)c.threshold();
h.V.lambda_l2 = c.lambda_l2();
h.V.V_min = - c.init_scale();
h.V.V_max = c.init_scale();
h.V.alpha = c.has_lr_eta() ? c.lr_eta() : h.alpha;
h.V.beta = c.has_lr_beta() ? c.lr_beta() : h.beta;
}
Server s(h);
server_ = s.server();
}
virtual ~AsyncServer() { }
protected:
virtual void LoadModel(Stream* fi) {
server_->Load(fi);
Progress prog;
prog.new_w() = ISGDHandle::new_w; prog.new_V() = ISGDHandle::new_V;
ReportToScheduler(prog.data);
ISGDHandle::new_w = 0; ISGDHandle::new_V = 0;
}
virtual void SaveModel(Stream* fo) const {
server_->Save(fo);
}
ps::KVStore* server_;
Config conf_;
};
class AsyncWorker : public solver::MinibatchWorker {
public:
AsyncWorker(const Config& conf) : conf_(conf) {
mb_size_ = conf_.minibatch();
shuffle_ = conf_.rand_shuffle();
concurrent_mb_ = conf_.max_concurrency();
neg_sampling_ = conf_.neg_sampling();
for (int i = 0; i < conf.embedding_size(); ++i) {
if (conf.embedding(i).dim() > 0) {
do_embedding_ = true; break;
}
}
}
virtual ~AsyncWorker() { }
protected:
virtual void ProcessMinibatch(const Minibatch& mb, const Workload& wl) {
auto data = new dmlc::data::RowBlockContainer<unsigned>();
auto feaid = std::make_shared<std::vector<FeaID>>();
auto feacnt = std::make_shared<std::vector<float>>();
double start = GetTime();
Localizer<FeaID> lc(conf_.num_threads());
lc.Localize(mb, data, feaid.get(), feacnt.get());
workload_time_ += GetTime() - start;
ps::SyncOpts pull_w_opt;
if (wl.type == Workload::TRAIN && wl.data_pass == 0 && do_embedding_) {
// push the feature count to the servers
ps::SyncOpts cnt_opt;
SetFilters(0, &cnt_opt);
cnt_opt.cmd = kPushFeaCnt;
int t = server_.ZPush(feaid, feacnt, cnt_opt);
pull_w_opt.deps.push_back(t);
// LL << DebugStr(*feacnt);
}
// pull the weight from the servers
auto val = new std::vector<float>();
auto val_siz = new std::vector<int>();
// this callback will be called when the weight has been actually pulled
// back
pull_w_opt.callback = [this, data, feaid, val, val_siz, wl]() {
double start = GetTime();
// eval the objective, and report progress to the scheduler
Loss<float> loss(data->GetBlock(), *val, *val_siz, conf_);
Progress prog; loss.Evaluate(&prog); ReportToScheduler(prog.data);
if (wl.type == Workload::PRED) {
loss.Predict(PredictStream(conf_.predict_out(), wl), conf_.prob_predict());
}
bool train = wl.type == Workload::TRAIN;
if (train) {
// calculate and push the gradients
loss.CalcGrad(val);
ps::SyncOpts push_grad_opt;
// filters to reduce network traffic
SetFilters(2, &push_grad_opt);
// this callback will be called when the gradients have been actually
// pushed
// LL << DebugStr(*val);
push_grad_opt.callback = [this]() { FinishMinibatch(); };
server_.ZVPush(feaid,
std::shared_ptr<std::vector<float>>(val),
std::shared_ptr<std::vector<int>>(val_siz),
push_grad_opt);
} else {
FinishMinibatch();
delete val;
delete val_siz;
}
delete data;
workload_time_ += GetTime() - start;
};
// filters to reduce network traffic
SetFilters(1, &pull_w_opt);
server_.ZVPull(feaid, val, val_siz, pull_w_opt);
}
private:
// flag: 0 push feature count, 1 pull weight, 2 push gradient
void SetFilters(int flag, ps::SyncOpts* opts) {
if (conf_.key_cache()) {
opts->AddFilter(ps::Filter::KEY_CACHING)->set_clear_cache(flag == 2);
}
if (conf_.fixed_bytes() > 0) {
if (flag == 0) {
// trancate the count to uint8
opts->AddFilter(ps::Filter::TRUNCATE_FLOAT)->set_num_bytes(1);
} else {
// randomly round the gradient
opts->AddFilter(ps::Filter::FIXING_FLOAT)->set_num_bytes(
conf_.fixed_bytes());
}
}
if (conf_.msg_compression()) {
opts->AddFilter(ps::Filter::COMPRESSING);
}
}
Config conf_;
bool do_embedding_ = false;
ps::KVWorker<float> server_;
};
} // namespace difacto
} // namespace dmlc