-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
302 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,6 @@ | ||
# rapidly_exploring_random_tree | ||
A simple implementation of Rapidly Exploring Random Tree using python3 | ||
A simple implementation of Rapidly Exploring Random Tree using python3. Visualization is dependent on OpenCV3. | ||
|
||
### Reference | ||
|
||
[Rapidly Exploring Random Tree (RRT) Path Planning](http://coecsl.ece.illinois.edu/ge423/spring13/RickRekoskeAvoid/rrt.html) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,297 @@ | ||
import numpy as np | ||
import cv2 | ||
|
||
class Node: | ||
|
||
def __init__(self, p, prev): | ||
self.p = p | ||
self.prev = prev | ||
|
||
def __str__(self): | ||
return str(self.p) | ||
|
||
|
||
class Rob: | ||
|
||
def __init__(self, p, r): | ||
self.p = p | ||
self.r = r | ||
|
||
|
||
class Param: | ||
|
||
def __init__(self, w, h, border_size, max_iter, smooth_iter, threshold): | ||
self.w = w | ||
self.h = h | ||
self.border_size = border_size | ||
self.max_iter = max_iter | ||
self.smooth_iter = smooth_iter | ||
self.threshold = threshold | ||
|
||
|
||
def in_collision_node(obst, rob, p, rrt=None): | ||
''' | ||
:param obst: obstacles | ||
:param rob: robot | ||
:return: true or false, whether the robot collide with obstacles | ||
''' | ||
for o in obst: | ||
dis = dist(o.p, p) | ||
if dis < rob.r + o.r: | ||
return True | ||
if rrt: | ||
for node in rrt: | ||
dis = dist(node.p, p) | ||
if dis < rob.r * 2: | ||
return True | ||
return False | ||
|
||
|
||
def in_collision_path(obst, rob, p1, p2): | ||
''' | ||
:param obst: obstacles | ||
:param rob: robot | ||
:param p1: | ||
:param p2: | ||
:return: | ||
''' | ||
d = dist(p1, p2) | ||
m = np.ceil(d / 0.3) | ||
t = np.linspace(0, 1, m) | ||
for i in range(1, len(t) - 1): | ||
p = p1 * (1 - t[i]) + p2 * t[i] | ||
if in_collision_node(obst, rob, p): | ||
return True | ||
return False | ||
|
||
|
||
|
||
def sample(w_low, w_high, h_low, h_high): | ||
''' | ||
:param h: the height of map | ||
:param w: the width of map | ||
:return: | ||
''' | ||
# p = np.random.rand(2) | ||
p = np.array([np.random.randint(w_low, w_high), np.random.randint(h_low, h_high)]) | ||
|
||
return p | ||
|
||
|
||
def find_nearest(rrt, p): | ||
''' | ||
:param rrt: | ||
:param p: | ||
:return: | ||
''' | ||
min_p = rrt[0] | ||
min_dist = dist(min_p.p, p) | ||
for i in range(1, len(rrt)): | ||
d = dist(rrt[i].p, p) | ||
if min_dist > d: | ||
min_dist = d | ||
min_p = rrt[i] | ||
return min_p | ||
|
||
|
||
def add_node(rrt, p, prev): | ||
node = Node(p, prev) | ||
rrt.append(node) | ||
return node | ||
|
||
def dist(p1, p2): | ||
''' | ||
:param p: | ||
:param p_goal: | ||
:return: | ||
''' | ||
return np.linalg.norm(p1 - p2) | ||
|
||
|
||
def get_path(rrt): | ||
''' | ||
:param rrt: | ||
:return: | ||
''' | ||
path = [] | ||
node = rrt[-1] | ||
path.append(node.p) | ||
while node.prev != None: | ||
path.append(node.prev.p) | ||
node = node.prev | ||
path.reverse() | ||
return path | ||
|
||
|
||
def smooth_path(path, rob, obst, smooth_iter, image): | ||
length = len(path) | ||
l = [0] * length | ||
for i in range(1, len(l)): | ||
l[i] = dist(path[i], path[i-1]) + l[i-1] | ||
|
||
iter = 0 | ||
while iter <= smooth_iter: | ||
iter += 1 | ||
s1 = np.random.rand(1) * l[-1] | ||
s2 = np.random.rand(1) * l[-1] | ||
if s2 < s1: | ||
s1, s2 = s2, s1 | ||
for k in range(1, length): | ||
if s1 < l[k]: | ||
i = k - 1 | ||
break | ||
for k in range(i + 1, length): | ||
if s2 < l[k]: | ||
j = k - 1 | ||
break | ||
if j <= i: | ||
continue | ||
|
||
t1 = (s1 - l[i]) / (l[i+1] - l[i]) | ||
gamma1 = (1 - t1) * path[i] + t1 * path[i+1] | ||
t2 = (s2 - l[j]) / (l[j+1] - l[j]) | ||
gamma2 = (1 - t2) * path[j] + t2 * path[j+1] | ||
|
||
if in_collision_path(obst, rob, gamma1, gamma2): | ||
continue | ||
new_path = [] | ||
new_path.extend(path[:i+1]) | ||
new_path.append(gamma1.astype(np.int32)) | ||
new_path.append(gamma2.astype(np.int32)) | ||
new_path.extend(path[j+1:]) | ||
path = new_path | ||
|
||
l = [0] * len(path) | ||
for i in range(2, len(l)): | ||
l[i] = dist(path[i], path[i - 1]) + l[i - 1] | ||
|
||
return path | ||
|
||
|
||
|
||
def plan_path_rrt(rob, obst, p_start, p_goal, param): | ||
image = np.zeros(shape=[param.h, param.w, 3], dtype=np.int8) | ||
image.fill(255) | ||
cv2.rectangle(image, (0, 0), (param.w - 1, param.h - 1), (0, 0, 0), param.border_size) | ||
cv2.circle(image, (p_start[0], p_start[1]), rob.r, (255, 255, 0), -1) | ||
cv2.circle(image, (p_goal[0], p_goal[1]), rob.r, (0, 0, 255), -1) | ||
for o in obst: | ||
cv2.circle(image, (o.p[0], o.p[1]), o.r, (0, 0, 0), -1) | ||
cv2.imshow('image', image.astype(np.uint8)) | ||
cv2.imwrite('../data/rrt_start.png', image.astype(np.uint8)) | ||
cv2.waitKey() | ||
|
||
rrt = [] | ||
rrt.append(Node(p_start, None)) | ||
iter = 0 | ||
while iter <= param.max_iter: | ||
iter += 1 | ||
|
||
p = sample(0 + param.border_size, param.w - border_size, 0 + param.border_size, param.h - border_size) | ||
|
||
rob.p = p | ||
|
||
if in_collision_node(obst, rob, p, rrt): | ||
continue | ||
|
||
nearest = find_nearest(rrt, p) | ||
|
||
if in_collision_path(obst, rob, nearest.p, p): | ||
continue | ||
|
||
p_node = add_node(rrt, p, nearest) | ||
|
||
cv2.line(image, (nearest.p[0], nearest.p[1]), (p[0], p[1]), (255, 20, 147), 1) | ||
cv2.circle(image, (p[0], p[1]), rob.r, (255, 255, 0), -1) | ||
cv2.imshow('image', image.astype(np.uint8)) | ||
|
||
if iter % 10 == 0: | ||
cv2.waitKey() | ||
cv2.imwrite('../data/rrt_' + str(iter) + ".png", image.astype(np.uint8)) | ||
|
||
if dist(p, p_goal) < param.threshold: | ||
if in_collision_path(obst, rob, p, p_goal): | ||
continue | ||
add_node(rrt, p_goal, p_node) | ||
|
||
cv2.line(image, (p[0], p[1]), (p_goal[0], p_goal[1]), (255, 20, 147), 1) | ||
cv2.circle(image, (p_goal[0], p_goal[1]), rob.r, (255, 255, 0), -1) | ||
cv2.imshow('image', image.astype(np.uint8)) | ||
cv2.imwrite('../data/rrt_' + str(iter+1) + ".png", image.astype(np.uint8)) | ||
cv2.waitKey() | ||
|
||
path = get_path(rrt) | ||
|
||
cv2.circle(image, (path[0][0], path[0][1]), rob.r, (139, 105, 20), -1) | ||
for i in range(1, len(path)): | ||
cv2.line(image, (path[i-1][0], path[i-1][1]), (path[i][0], path[i][1]), (205, 205, 0), 1) | ||
cv2.circle(image, (path[i][0], path[i][1]), rob.r, (139, 105, 20), -1) | ||
cv2.imshow('image', image.astype(np.uint8)) | ||
cv2.imwrite('../data/rrt_unsmooth.png', image.astype(np.uint8)) | ||
cv2.waitKey() | ||
|
||
path = smooth_path(path, rob, obst, param.smooth_iter, image) | ||
|
||
cv2.circle(image, (path[0][0], path[0][1]), rob.r, (0, 0, 205), -1) | ||
for i in range(1, len(path)): | ||
cv2.line(image, (path[i - 1][0], path[i - 1][1]), (path[i][0], path[i][1]), (65, 105, 225), 1) | ||
cv2.circle(image, (path[i][0], path[i][1]), rob.r, (0, 0, 205), -1) | ||
cv2.imshow('image', image.astype(np.uint8)) | ||
cv2.imwrite('../data/rrt_smooth.png', image.astype(np.uint8)) | ||
cv2.waitKey() | ||
|
||
break | ||
|
||
|
||
def obstacles_1(height, width): | ||
obsts = [] | ||
for w in range(int(0.5 * width), int(0.75 * width)): | ||
obsts.append([w, int(1. / 8 * height)]) | ||
obsts.append([w, int(3. / 8 * height)]) | ||
for h in range(int(1. / 8 * height), int(3. / 8 * height)): | ||
obsts.append([int(1. / 2 * width), h]) | ||
obsts.append([int(3. / 4 * width), h]) | ||
|
||
for h in range(int(1. / 2 * height), int(3. / 4 * height)): | ||
obsts.append([int(1. / 8 * width), h]) | ||
obsts.append([int(3. / 8 * width), h]) | ||
for w in range(int(1. / 8 * width), int(3. / 8 * width)): | ||
obsts.append([w, int(1. / 2 * height)]) | ||
obsts.append([w, int(3. / 4 * width)]) | ||
|
||
obsts = np.array(obsts, dtype=np.int32) | ||
return obsts | ||
|
||
|
||
def obstacles_2(height, width): | ||
obsts = [] | ||
for w in range(int(1. / 3 * width), int(2. / 3 * width)): | ||
obsts.append([w, int(1. / 3 * height)]) | ||
obsts.append([w, int(2. / 3 * height)]) | ||
for h in range(int(1. / 3 * height), int(2. / 3 * height)): | ||
obsts.append([int(1. / 3 * width), h]) | ||
for h in range(int(1. / 3 * height), int(6. / 12 * height)): | ||
obsts.append([int(2. / 3 * width), h]) | ||
for h in range(int(6.5 / 12 * height), int(2. / 3 * height)): | ||
obsts.append([int(2. / 3 * width), h]) | ||
|
||
obsts = np.array(obsts, dtype=np.int32) | ||
return obsts | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
width, height, border_size = 200, 200, 2 | ||
goal_threshold = 20 | ||
max_iter, smooth_iter = 1000, 20 | ||
param = Param(width, height, border_size, max_iter, goal_threshold, smooth_iter) | ||
p_start = np.array([100, 100], dtype=np.int32) | ||
p_goal = np.array([190, 190], dtype=np.int32) | ||
obj_coord = obstacles_2(height, width) | ||
rob = Rob(p_start, 2) | ||
obst = [] | ||
for coord in obj_coord: | ||
obst.append(Rob(coord, 2)) | ||
plan_path_rrt(rob, obst, p_start, p_goal, param) | ||
|
||
|