다양한 Dataset과 Model을 이용하여 fine-tuning한 결과를 task별로 정리합니다.
Dataset | Model | Acc | LR | Optizmier | batch size (# gpu) |
---|---|---|---|---|---|
Bluehouse petition | BERT | 88.26 | 5e-6 | Adamw | 15 |
---- | KoELECTRA V1 | 88.9 | 5e-6 | AdamP | 96(2) |
---- | KoELECTRA V2 | 89.14 | 5e-6 | AdamP | 96(2) |
---- | XLM-RoBERTa-Large | 89.52 | AdamP | 24(2) |
Dataset : https://dacon.io/competitions/open/235597/data/
Dataset | Model | ROGUE-1 | ROGUE-2 | ROGUE-L | LR | Optizmier | batch size (# gpu) | Max_seq_Len |
---|---|---|---|---|---|---|---|---|
Dacon Abstract Summarization | KoBART | 0.430 | 0.273 | 0.320 | 3e-5 | Adafactor | 4(2) | 512 |
---- | KoBART | 0.517 | 0.386 | 0.463 | 1e-4 | Adafactor | 4(2) | 512 |
---- | KoBART | 0.505 | 0.371 | 0.449 | 1e-3 | Adafactor | 4(2) | 512 |
Dataset : https://dacon.io/competitions/official/235673/data/