Skip to content

Commit

Permalink
Small changes to the tests
Browse files Browse the repository at this point in the history
  • Loading branch information
JamesAllingham committed Jun 8, 2018
1 parent 45a6761 commit 22f7b34
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 12 deletions.
22 changes: 11 additions & 11 deletions tests/test_gmm.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ class OneColumnAllMissingTestCase(testing_utils.OneColumnAllMissingBaseTestCase)

def runTest(self):

model = GMM(self.data, 1, verbose=False, independent_vars=True, map_est=False)
model = GMM(self.data, num_components=1, verbose=False, independent_vars=True, map_est=False)

imputed_X1 = model.ml_imputation()

Expand Down Expand Up @@ -144,11 +144,11 @@ class IndependentVsDependentLLTestCase(testing_utils.IrisMCAR10BaseTestCase):

def runTest(self):

model_ind = GMM(self.data, 1, verbose=False, independent_vars=True, map_est=False)
model_ind = GMM(self.data, num_components=1, verbose=False, independent_vars=True, map_est=False)
model_ind.fit()
ll_ind = model_ind.log_likelihood(complete=False, return_mean=True)

model_dep = GMM(self.data, 1, verbose=False, independent_vars=False, map_est=False)
model_dep = GMM(self.data, num_components=1, verbose=False, independent_vars=False, map_est=False)
model_dep.fit()
ll_dep = model_dep.log_likelihood(complete=False, return_mean=True)

Expand Down Expand Up @@ -186,10 +186,10 @@ def runTest(self):
β0=1
W0=np.eye(self.data.shape[1])*1000
ν0=self.data.shape[1]
model = GMM(self.data, 1, verbose=False, independent_vars=False, m0=m0, ν0=ν0, β0=β0, W0=W0)
model = GMM(self.data, num_components=1, verbose=False, independent_vars=False, m0=m0, ν0=ν0, β0=β0, W0=W0)
model.fit(ϵ=0)

model_dep = GMM(self.data, 1, verbose=False, independent_vars=False, m0=m0, ν0=ν0, β0=β0, W0=W0)
model_dep = GMM(self.data, num_components=1, verbose=False, independent_vars=False, m0=m0, ν0=ν0, β0=β0, W0=W0)
model_dep.fit(ϵ=0)
ll_dep = model_dep.log_likelihood(complete=False, return_mean=True)

Expand All @@ -198,12 +198,12 @@ def runTest(self):
class TwoCompLLSmallerThan10CompTestCase(testing_utils.IrisMCAR10BaseTestCase):

def runTest(self):

model2 = GMM(self.data, 2, verbose=False, independent_vars=True, map_est=False)
W0=np.eye(self.data.shape[1])
model2 = GMM(self.data, num_components=2, verbose=False, independent_vars=True, map_est=False, W0=W0)
model2.fit()
ll2 = model2.log_likelihood(complete=False, return_mean=True)

model10 = GMM(self.data, 10, verbose=False, independent_vars=True, map_est=False)
model10 = GMM(self.data, num_components=10, verbose=False, independent_vars=True, map_est=False, W0=W0)
model10.fit()
ll10 = model10.log_likelihood(complete=False, return_mean=True)

Expand All @@ -213,11 +213,11 @@ class MAPandMLEGiveDifferentLLsTestCase(testing_utils.IrisMCAR20BaseTestCase):

def runTest(self):

modelMLE = GMM(self.data, 2, verbose=False, independent_vars=True, map_est=False)
modelMLE = GMM(self.data, num_components=2, verbose=False, independent_vars=True, map_est=False)
modelMLE.fit()
llMLE = modelMLE.log_likelihood(complete=False, return_mean=True)

modelMAP = GMM(self.data, 2, verbose=False, independent_vars=True, map_est=True)
modelMAP = GMM(self.data, num_components=2, verbose=False, independent_vars=True, map_est=True)
modelMAP.fit()
llMAP = modelMAP.log_likelihood(complete=False, return_mean=True)

Expand All @@ -239,7 +239,7 @@ class TenCompMAPDoesntCrashOnIris50TestCase(testing_utils.IrisMCAR50BaseTestCase

def runTest(self):

model = GMM(self.data, 10, verbose=False, independent_vars=True, map_est=True)
model = GMM(self.data, num_components=10, verbose=False, independent_vars=True, map_est=True)
raised = False
try:
model.fit()
Expand Down
2 changes: 1 addition & 1 deletion tests/test_sg.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ class OneColumnAllMissingTestCase(testing_utils.OneColumnAllMissingBaseTestCase)

def runTest(self):

model = SingleGaussian(self.data, verbose=False, independent_vars=False, map_est=False)
model = SingleGaussian(self.data, verbose=False, independent_vars=False, map_est=True)
imputed_X1 = model.ml_imputation()
model.fit()
imputed_X2 = model.ml_imputation()
Expand Down

0 comments on commit 22f7b34

Please sign in to comment.