Skip to content

Commit

Permalink
bump
Browse files Browse the repository at this point in the history
  • Loading branch information
javierlcontreras committed Dec 2, 2024
1 parent 5f82730 commit afe3aab
Showing 1 changed file with 10 additions and 20 deletions.
30 changes: 10 additions & 20 deletions FLT/HaarMeasure/ConcreteCharCalculations.lean
Original file line number Diff line number Diff line change
@@ -1,35 +1,24 @@
import Mathlib.Analysis.Complex.ReImTopology
import Mathlib.MeasureTheory.Measure.Lebesgue.EqHaar
import Mathlib.RingTheory.Complex
import FLT.ForMathlib.MeasurableSpacePadics
import FLT.HaarMeasure.DistribHaarChar
import FLT.Mathlib.Analysis.Complex.Basic
import FLT.Mathlib.Data.Complex.Basic
import FLT.Mathlib.LinearAlgebra.Determinant
import FLT.Mathlib.RingTheory.Norm.Defs
import Mathlib.Analysis.Complex.ReImTopology
import Mathlib.MeasureTheory.Measure.Lebesgue.EqHaar

open Real Complex Padic MeasureTheory Measure NNReal Set TopologicalSpace
open scoped Pointwise ENNReal
open TopologicalRing


lemma distribHaarChar_complex (z : ℂˣ) : distribHaarChar ℂ z = ‖(z : ℂ)‖₊ ^ (-2 : ℤ) := by
-- Use the (0, 1) + i(0, 1) open
refine distribHaarChar_eq_of_measure_smul_eq_mul (s := Icc 0 1 ×ℂ Icc 0 1) (μ := volume)
(measure_pos_of_nonempty_interior _ <| by simp [interior_reProdIm]).ne'
(isCompact_Icc.reProdIm isCompact_Icc).measure_ne_top ?_
have key : ((LinearMap.mul ℂ ℂ z).restrictScalars ℝ).det = ‖z.val‖₊ ^ 2 := by
refine Complex.ofReal_injective ?_
rw [LinearMap.det_restrictScalars]
simp [Algebra.norm_complex_apply, normSq_eq_norm_sq, zpow_ofNat]
have := addHaar_preimage_linearMap (E := ℂ) volume
(f := (LinearMap.mul ℂ ℂ z).restrictScalars ℝ)
simp [key] at this
convert this _ using 2
· symm
exact Set.preimage_smul z _
· simp [← Real.ennnorm_eq_ofReal_abs, ← Complex.norm_eq_abs, zpow_ofNat]
sorry

lemma distribHaarChar_real (x : ℝˣ) : distribHaarChar ℝ x = ‖(x : ℝ)‖₊⁻¹ := by
let K : Set ℝ := Icc 0 1
refine distribHaarChar_eq_of_measure_smul_eq_mul (s := Icc 0 1) (μ := volume)
(measure_pos_of_nonempty_interior _ <| by simp).ne' isCompact_Icc.measure_ne_top ?_
rw [Units.smul_def, Measure.addHaar_smul]
Expand All @@ -49,16 +38,17 @@ lemma volume_smul_integral (x : ℤ_[p]ˣ): volume (AddSubgroup.closure {x.1}).c

lemma volume_smul (x : ℚ_[p]ˣ): volume (AddSubgroup.closure {x.1}).carrier = ‖x.1‖₊⁻¹ := sorry

lemma PadicInt.coe_injective {x y : ℤ_[p]}: ((x : ℚ_[p]) = (y : ℚ_[p])) ↔ (x = y) := by
lemma PadicInt.coe_injective {x y : ℤ_[p]}: (x = y) ↔ ((x : ℚ_[p]) = (y : ℚ_[p])) := by
sorry

instance : Coe ℤ_[p] ℚ_[p] := by infer_instance
instance : Coe ℤ_[p]ˣ ℚ_[p]ˣ where
coe u := sorry
noncomputable instance : Coe ℤ_[p]ˣ ℚ_[p]ˣ where
coe u := ⟨u.1, u.1⁻¹,
by sorry,
by sorry

lemma distribHaarChar_padic_integral (x : ℤ_[p]ˣ) : distribHaarChar ℚ_[p] (x : ℚ_[p]ˣ) = ‖(x : ℚ_[p])‖₊⁻¹ := by
let K : Set ℚ_[p] := {x : ℚ_[p] | ‖x‖ ≤ 1}
refine distribHaarChar_eq_of_measure_smul_eq_mul (s := K) (μ := volume) (G := ℚ_[p]ˣ)
(by simp [K, Padic.volume_closedBall]) (by simp [K, Padic.volume_closedBall]) ?_
rw [Units.smul_def]
sorry

0 comments on commit afe3aab

Please sign in to comment.