Skip to content

Commit

Permalink
Merge branch 'main' of github.com:ImperialCollegeLondon/FLT
Browse files Browse the repository at this point in the history
  • Loading branch information
kbuzzard committed Dec 2, 2024
2 parents cad88f1 + 60fcaf3 commit 54504ed
Show file tree
Hide file tree
Showing 2 changed files with 19 additions and 10 deletions.
13 changes: 12 additions & 1 deletion FLT/DedekindDomain/FiniteAdeleRing/BaseChange.lean
Original file line number Diff line number Diff line change
Expand Up @@ -277,11 +277,22 @@ attribute [local instance] Algebra.TensorProduct.rightAlgebra in
variable (v : HeightOneSpectrum A) in
instance : TopologicalSpace (L ⊗[K] adicCompletion K v) := moduleTopology (adicCompletion K v) _

attribute [local instance] Algebra.TensorProduct.rightAlgebra in
variable (v : HeightOneSpectrum A) in
instance : IsModuleTopology (adicCompletion K v) (L ⊗[K] adicCompletion K v) :=
⟨rfl⟩

attribute [local instance] Algebra.TensorProduct.rightAlgebra in
noncomputable def adicCompletionTensorComapContinuousAlgHom (v : HeightOneSpectrum A) :
L ⊗[K] adicCompletion K v →A[L]
Π w : {w : HeightOneSpectrum B // v = comap A w}, adicCompletion L w.1 where
__ := adicCompletionTensorComapAlgHom A K L B v
cont := sorry -- #237
cont := by
apply IsModuleTopology.continuous_of_ringHom (R := adicCompletion K v)
show Continuous (RingHom.comp _ (Algebra.TensorProduct.includeRight.toRingHom))
convert (adicCompletionContinuousComapAlgHom A K L B v).cont using 1
ext
simp [adicCompletionTensorComapAlgHom, adicCompletionContinuousComapAlgHom]

noncomputable def adicCompletionComapAlgEquiv (v : HeightOneSpectrum A) :
(L ⊗[K] (HeightOneSpectrum.adicCompletion K v)) ≃ₐ[L]
Expand Down
16 changes: 7 additions & 9 deletions FLT/NumberField/AdeleRing.lean
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@ section BaseChange

end BaseChange


section Discrete

open NumberField DedekindDomain
Expand Down Expand Up @@ -64,14 +63,13 @@ theorem Rat.AdeleRing.zero_discrete : ∃ U : Set (AdeleRing ℚ),
-- and the goal is that there exists an integer `y` such that `y = x`.
sorry -- issue #254
obtain ⟨y, rfl⟩ := intx
simp at h1
clear h2 -- not needed
norm_cast
norm_cast at h1
-- mathematically this is trivial:
-- h1 says that the integer y satisfies |y| < 1
-- and the goal is that y = 0
sorry -- issue #255
simp only [abs_lt] at h1
norm_cast at h1 ⊢
-- We need the next line because `norm_cast` is for some reason producing a `negSucc 0`.
-- I haven't been able to isolate this behaviour even in a standalone lemma.
-- We could also make `omega` more robust against accidental appearances of `negSucc`.
rw [Int.negSucc_eq] at h1
omega
· intro x
simp only [Set.mem_singleton_iff, Set.mem_preimage]
rintro rfl
Expand Down

0 comments on commit 54504ed

Please sign in to comment.