-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
180a43c
commit 20dc973
Showing
236 changed files
with
8,182 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
package examples; | ||
|
||
import ch.idsia.credici.IO; | ||
import ch.idsia.credici.factor.EquationBuilder; | ||
import ch.idsia.credici.inference.CausalMultiVE; | ||
import ch.idsia.credici.inference.CredalCausalVE; | ||
import ch.idsia.credici.model.StructuralCausalModel; | ||
import ch.idsia.credici.model.builder.CausalBuilder; | ||
import ch.idsia.credici.model.builder.EMCredalBuilder; | ||
import ch.idsia.credici.utility.DataUtil; | ||
import ch.idsia.credici.utility.FactorUtil; | ||
import ch.idsia.crema.factor.bayesian.BayesianFactor; | ||
import ch.idsia.crema.factor.credal.vertex.VertexFactor; | ||
import ch.idsia.crema.model.graphical.SparseModel; | ||
import ch.idsia.crema.model.graphical.specialized.BayesianNetwork; | ||
import gnu.trove.map.TIntIntMap; | ||
import jdk.jshell.spi.ExecutionControl; | ||
import org.apache.commons.lang3.ArrayUtils; | ||
import org.junit.Assert; | ||
|
||
import java.io.IOException; | ||
import java.nio.file.Path; | ||
import java.util.HashMap; | ||
import java.util.stream.IntStream; | ||
|
||
public class PearlExample { | ||
public static void main(String[] args) throws InterruptedException, ExecutionControl.NotImplementedException, IOException { | ||
|
||
String wdir = "."; | ||
String folder = Path.of(wdir, "papers/21why/examples/").toString(); | ||
|
||
BayesianNetwork bnet = new BayesianNetwork(); | ||
|
||
int X = bnet.addVariable(2); | ||
int Y = bnet.addVariable(2); | ||
int Z = bnet.addVariable(2); | ||
|
||
bnet.addParents(X, Z); | ||
bnet.addParents(Y, X, Z); | ||
|
||
|
||
// states x, y, z = True = 1 | ||
int x=1, y=1, z=1; | ||
|
||
// states x', y', z' = False = 0 | ||
int x_=0, y_=0, z_=0; | ||
|
||
|
||
BayesianFactor counts = new BayesianFactor(bnet.getDomain(Z,X,Y)); | ||
//new double[]{1, 13, 313,114, 109, 107, 41, 2}); | ||
|
||
|
||
counts.setValue(2, z_, x_, y_); | ||
counts.setValue(114, z_, x_, y); | ||
counts.setValue(41, z_, x, y_); | ||
counts.setValue(313, z_, x, y); | ||
|
||
counts.setValue(107, z, x_, y_); | ||
counts.setValue(13, z, x_, y); | ||
counts.setValue(109, z, x, y_); | ||
counts.setValue(1, z, x, y); | ||
|
||
FactorUtil.print(counts); | ||
|
||
|
||
int N = (int) counts.marginalize(X, Y, Z).getValueAt(0); | ||
Assert.assertEquals(700, N, 0); | ||
|
||
|
||
BayesianFactor nz = counts.marginalize(X, Y); | ||
BayesianFactor nxz = counts.marginalize(Y); | ||
BayesianFactor nxy = counts.marginalize(Z); | ||
|
||
|
||
BayesianFactor px_z = nxz.divide(nz); | ||
BayesianFactor py_xz = counts.reorderDomain(0,1,2).divide(nxz.reorderDomain(X,Z)); | ||
BayesianFactor pz = nz.scalarMultiply(1.0/N); | ||
BayesianFactor py_x = nxy.divide(nxy.marginalize(Y)); | ||
BayesianFactor pxy = nxy.scalarMultiply(1.0/N); | ||
|
||
|
||
//BayesianFactor | ||
|
||
TIntIntMap[] data = DataUtil.dataFromCounts(counts); | ||
|
||
|
||
// Empirical network | ||
bnet.setFactor(Z, pz); | ||
bnet.setFactor(Y, py_xz); | ||
bnet.setFactor(X, px_z); | ||
|
||
|
||
int[] exoVarSizes = IntStream.of(bnet.getVariables()) | ||
.mapToObj(v -> bnet.getDomain(ArrayUtils.add(bnet.getParents(v), v))) | ||
.mapToInt(dom -> dom.getCombinations()+1) | ||
.toArray(); | ||
|
||
|
||
|
||
|
||
|
||
// Equationless | ||
StructuralCausalModel m_eqless = CausalBuilder.of(bnet).build(); | ||
|
||
BayesianFactor fx = EquationBuilder.of(m_eqless).fromVector(X, 1,0, 0,0, 0,1, 1,1); | ||
m_eqless.setFactor(X, fx); | ||
|
||
|
||
m_eqless.fillExogenousWithRandomFactors(3); | ||
|
||
|
||
m_eqless.getFactor(X).filter(X, x_).filter(Z, z_); | ||
m_eqless.getFactor(X).filter(X, x).filter(Z, z_); | ||
m_eqless.getFactor(X).filter(X, x_).filter(Z, z); | ||
m_eqless.getFactor(X).filter(X, x).filter(Z, z); | ||
|
||
|
||
|
||
|
||
|
||
HashMap empData = DataUtil.getEmpiricalMap(m_eqless, data); | ||
empData = FactorUtil.fixEmpiricalMap(empData,6); | ||
|
||
System.out.println(empData); | ||
|
||
SparseModel vmodelPGM = m_eqless.toVCredal(empData.values()); | ||
System.out.println(m_eqless); | ||
System.out.println("vmodel PGM:"); | ||
System.out.println(vmodelPGM); | ||
|
||
|
||
SparseModel hmodelPGM = m_eqless.toHCredal(empData.values()); | ||
System.out.println("hmodel PGM:"); | ||
System.out.println(hmodelPGM); | ||
|
||
|
||
CredalCausalVE inf = new CredalCausalVE(m_eqless, empData.values()); | ||
|
||
IO.write(m_eqless, folder+"consPearl.uai"); | ||
DataUtil.toCSV(folder+"dataPearl.csv", data); | ||
|
||
|
||
VertexFactor pn = (VertexFactor) inf.probNecessity(X,Y,1,0); | ||
VertexFactor ps = (VertexFactor) inf.probSufficiency(X,Y,1,0); | ||
VertexFactor pns = (VertexFactor) inf.probNecessityAndSufficiency(X,Y,1,0); | ||
|
||
|
||
System.out.println("PGM exact method"); | ||
System.out.println("===================="); | ||
System.out.println("pn="+pn); | ||
System.out.println("ps="+ps); | ||
System.out.println("pns="+pns); | ||
|
||
|
||
|
||
// EM | ||
for(int u: m_eqless.getExogenousVars()) | ||
System.out.println(u+": "+m_eqless.getFactor(u)); | ||
|
||
EMCredalBuilder builder = EMCredalBuilder.of(m_eqless, data) | ||
.setMaxEMIter(200) | ||
.setNumTrajectories(20) | ||
//.setNumDecimalsRound(-1) | ||
.build(); | ||
|
||
|
||
CausalMultiVE inf2 = new CausalMultiVE(builder.getSelectedPoints()); | ||
|
||
VertexFactor pns2 = (VertexFactor) inf2.probNecessityAndSufficiency(X,Y,1,0); | ||
|
||
//System.out.println("pn2="+pn2); | ||
//System.out.println("ps2="+ps2); | ||
System.out.println("pns2="+pns2); | ||
|
||
|
||
|
||
|
||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
CAUSAL | ||
6 | ||
2 2 2 4 16 2 | ||
6 | ||
3 3 2 0 | ||
4 4 2 0 1 | ||
2 5 2 | ||
1 3 | ||
1 4 | ||
1 5 | ||
|
||
8 1 0 0 0 0 1 1 1 | ||
64 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 | ||
2 0 1 | ||
4 0.842 0.071 0.054 0.033 | ||
16 0.01 0.001 0.31 0.003 0.005 0.077 0.001 0.007 0.001 0.048 0.054 0.152 0.002 0.314 0.003 0.012 | ||
2 0.7 0.3 |
Oops, something went wrong.