Skip to content

Commit

Permalink
Merge pull request #70 from IBM/fix/vit_out_indices
Browse files Browse the repository at this point in the history
fix indices vit
  • Loading branch information
Joao-L-S-Almeida authored Aug 5, 2024
2 parents 6c483a8 + 94102ca commit 3212a54
Show file tree
Hide file tree
Showing 5 changed files with 34 additions and 48 deletions.
5 changes: 4 additions & 1 deletion terratorch/models/backbones/prithvi_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,10 @@ def checkpoint_filter_wrapper_fn(state_dict, model):
kwargs = {k: v for k, v in kwargs.items() if k != "out_indices"}
model.feature_info = FeatureInfo(model.feature_info, out_indices)
model.encode_decode_forward = model.forward
model.forward = model.forward_features
def forward_filter_indices(*args, **kwargs):
features = model.forward_features(*args, **kwargs)
return [features[i] for i in out_indices]
model.forward = forward_filter_indices
model.model_bands = model_bands
model.pretrained_bands = pretrained_bands

Expand Down
1 change: 0 additions & 1 deletion tests/manufactured-finetune_prithvi_vit_100.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,6 @@ model:
- NIR_NARROW
- SWIR_1
- SWIR_2
num_frames: 1
head_dropout: 0.5708022831486758
head_final_act: torch.nn.ReLU
head_learned_upscale_layers: 2
Expand Down
1 change: 0 additions & 1 deletion tests/manufactured-finetune_prithvi_vit_300.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,6 @@ model:
- NIR_NARROW
- SWIR_1
- SWIR_2
num_frames: 1
head_dropout: 0.5708022831486758
head_final_act: torch.nn.ReLU
head_learned_upscale_layers: 2
Expand Down
20 changes: 15 additions & 5 deletions tests/test_backbones.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,13 @@
# Copyright contributors to the Terratorch project

import importlib
import os

import pytest
import timm
import torch
import importlib

import terratorch # noqa: F401
import os

NUM_CHANNELS = 6
NUM_FRAMES = 3
Expand Down Expand Up @@ -52,6 +54,14 @@ def test_vit_models_accept_multitemporal(model_name, input_224_multitemporal):
backbone = timm.create_model(model_name, pretrained=False, num_frames=NUM_FRAMES)
backbone(input_224_multitemporal)

#def test_swin_models_accept_non_divisible_by_patch_size(input_386):
# backbone = timm.create_model("prithvi_swin_90_us", pretrained=False, num_frames=NUM_FRAMES)
# backbone(input_386)
@pytest.mark.parametrize("model_name", ["prithvi_vit_100", "prithvi_vit_300"])
def test_out_indices(model_name, input_224):
out_indices = [2, 4, 8, 10]
backbone = timm.create_model(model_name, pretrained=False, features_only=True, out_indices=out_indices)
assert backbone.feature_info.out_indices == out_indices

output = backbone(input_224)
full_output = backbone.forward_features(input_224)

for filtered_index, full_index in enumerate(out_indices):
assert torch.allclose(full_output[full_index], output[filtered_index])
55 changes: 15 additions & 40 deletions tests/test_finetune.py
Original file line number Diff line number Diff line change
@@ -1,64 +1,39 @@
import os
import shutil

import pytest
import timm
import torch
import importlib
import terratorch
import subprocess
import os

from terratorch.cli_tools import build_lightning_cli

@pytest.mark.parametrize("model_name", ["prithvi_swin_B", "prithvi_swin_L", "prithvi_vit_100", "prithvi_vit_300"])
def test_finetune_multiple_backbones(model_name):

@pytest.fixture(autouse=True)
def setup_and_cleanup(model_name):
model_instance = timm.create_model(model_name)
pretrained_bands = [0, 1, 2, 3, 4, 5]
model_bands = [0, 1, 2, 3, 4, 5]

state_dict = model_instance.state_dict()

torch.save(state_dict, os.path.join("tests/", model_name + ".pt"))
torch.save(state_dict, os.path.join("tests", model_name + ".pt"))

yield # everything after this runs after each test

# Running the terratorch CLI
os.remove(os.path.join("tests", model_name + ".pt"))
shutil.rmtree(os.path.join("tests", "all_ecos_random"))

@pytest.mark.parametrize("model_name", ["prithvi_swin_B", "prithvi_swin_L", "prithvi_vit_100", "prithvi_vit_300"])
def test_finetune_multiple_backbones(model_name):
command_list = ["fit", "-c", f"tests/manufactured-finetune_{model_name}.yaml"]
_ = build_lightning_cli(command_list)


@pytest.mark.parametrize("model_name", ["prithvi_swin_B"])
def test_finetune_bands_intervals(model_name):

model_instance = timm.create_model(model_name)

state_dict = model_instance.state_dict()

torch.save(state_dict, os.path.join("tests/", model_name + ".pt"))

# Running the terratorch CLI
command_list = ["fit", "-c", f"tests/manufactured-finetune_{model_name}_band_interval.yaml"]
_ = build_lightning_cli(command_list)

@pytest.mark.parametrize("model_name", ["prithvi_swin_B"])
def test_finetune_bands_str(model_name):

model_instance = timm.create_model(model_name)

state_dict = model_instance.state_dict()

torch.save(state_dict, os.path.join("tests/", model_name + ".pt"))

# Running the terratorch CLI
command_list = ["fit", "-c", f"tests/manufactured-finetune_{model_name}_string.yaml"]
_ = build_lightning_cli(command_list)

@pytest.mark.parametrize("model_name", ["prithvi_swin_B"])
def test_finetune_bands_str(model_name):

model_instance = timm.create_model(model_name)

state_dict = model_instance.state_dict()

torch.save(state_dict, os.path.join("tests/", model_name + ".pt"))

# Running the terratorch CLI
command_list = ["fit", "-c", f"tests/manufactured-finetune_{model_name}_metrics_from_file.yaml"]
command_list = ["fit", "-c", f"tests/manufactured-finetune_{model_name}_string.yaml"]
_ = build_lightning_cli(command_list)

0 comments on commit 3212a54

Please sign in to comment.