-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Testing the definition by interval using a dedicated yaml file
Signed-off-by: João Lucas de Sousa Almeida <[email protected]>
- Loading branch information
1 parent
a0ce8aa
commit 295128f
Showing
2 changed files
with
149 additions
and
0 deletions.
There are no files selected for viewing
136 changes: 136 additions & 0 deletions
136
tests/manufactured-finetune_prithvi_swin_B_band_interval.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
# lightning.pytorch==2.1.1 | ||
seed_everything: 42 | ||
trainer: | ||
accelerator: auto | ||
strategy: auto | ||
devices: auto | ||
num_nodes: 1 | ||
# precision: 16-mixed | ||
logger: | ||
class_path: TensorBoardLogger | ||
init_args: | ||
save_dir: tests/ | ||
name: all_ecos_random | ||
callbacks: | ||
- class_path: RichProgressBar | ||
- class_path: LearningRateMonitor | ||
init_args: | ||
logging_interval: epoch | ||
- class_path: EarlyStopping | ||
init_args: | ||
monitor: val/loss | ||
patience: 100 | ||
max_epochs: 5 | ||
check_val_every_n_epoch: 1 | ||
log_every_n_steps: 20 | ||
enable_checkpointing: true | ||
default_root_dir: tests/ | ||
data: | ||
class_path: GenericNonGeoPixelwiseRegressionDataModule | ||
init_args: | ||
batch_size: 2 | ||
num_workers: 4 | ||
train_transform: | ||
- class_path: albumentations.HorizontalFlip | ||
init_args: | ||
p: 0.5 | ||
- class_path: albumentations.Rotate | ||
init_args: | ||
limit: 30 | ||
border_mode: 0 # cv2.BORDER_CONSTANT | ||
value: 0 | ||
# mask_value: 1 | ||
p: 0.5 | ||
- class_path: ToTensorV2 | ||
dataset_bands: | ||
- [0, 11] | ||
output_bands: | ||
- [1, 3] | ||
- [4, 6] | ||
rgb_indices: | ||
- 2 | ||
- 1 | ||
- 0 | ||
train_data_root: tests/ | ||
train_label_data_root: tests/ | ||
val_data_root: tests/ | ||
val_label_data_root: tests/ | ||
test_data_root: tests/ | ||
test_label_data_root: tests/ | ||
img_grep: "regression*input*.tif" | ||
label_grep: "regression*label*.tif" | ||
means: | ||
- 547.36707 | ||
- 898.5121 | ||
- 1020.9082 | ||
- 2665.5352 | ||
- 2340.584 | ||
- 1610.1407 | ||
stds: | ||
- 411.4701 | ||
- 558.54065 | ||
- 815.94025 | ||
- 812.4403 | ||
- 1113.7145 | ||
- 1067.641 | ||
no_label_replace: -1 | ||
no_data_replace: 0 | ||
|
||
model: | ||
class_path: terratorch.tasks.PixelwiseRegressionTask | ||
init_args: | ||
model_args: | ||
decoder: UperNetDecoder | ||
pretrained: true | ||
backbone: prithvi_swin_B | ||
backbone_pretrained_cfg_overlay: | ||
file: tests/prithvi_swin_B.pt | ||
backbone_drop_path_rate: 0.3 | ||
# backbone_window_size: 8 | ||
decoder_channels: 256 | ||
in_channels: 6 | ||
bands: | ||
- BLUE | ||
- GREEN | ||
- RED | ||
- NIR_NARROW | ||
- SWIR_1 | ||
- SWIR_2 | ||
num_frames: 1 | ||
head_dropout: 0.5708022831486758 | ||
head_final_act: torch.nn.ReLU | ||
head_learned_upscale_layers: 2 | ||
loss: rmse | ||
#aux_heads: | ||
# - name: aux_head | ||
# decoder: IdentityDecoder | ||
# decoder_args: | ||
# decoder_out_index: 2 | ||
# head_dropout: 0,5 | ||
# head_channel_list: | ||
# - 64 | ||
# head_final_act: torch.nn.ReLU | ||
#aux_loss: | ||
# aux_head: 0.4 | ||
ignore_index: -1 | ||
freeze_backbone: true | ||
freeze_decoder: false | ||
model_factory: PrithviModelFactory | ||
|
||
# uncomment this block for tiled inference | ||
# tiled_inference_parameters: | ||
# h_crop: 224 | ||
# h_stride: 192 | ||
# w_crop: 224 | ||
# w_stride: 192 | ||
# average_patches: true | ||
optimizer: | ||
class_path: torch.optim.AdamW | ||
init_args: | ||
lr: 0.00013524680528283027 | ||
weight_decay: 0.047782217873995426 | ||
lr_scheduler: | ||
class_path: ReduceLROnPlateau | ||
init_args: | ||
monitor: val/loss | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters