-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
124 lines (96 loc) · 3.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import json
import numpy as np
from termcolor import colored
import torch
import torch.nn as nn
from nltk_utils import tokenize, stem, bag_of_words
from torch.utils.data import Dataset, DataLoader
from model import NeuralNet
def trainModel(intent_file):
# Opens the intents.json file
with open(intent_file, 'r') as f:
intents = json.load(f)
ignore_words = ['?', "!", ".", ","]
all_words = []
tags = []
# xy will contain tokenized pattern sentence with it's respective tag
xy = []
print(colored("\n<-- Initializing Model Training -->", "red"))
for intent in intents['intents']:
tag = intent['tag']
tags.append(tag)
for pattern in intent['patterns']:
w = tokenize(pattern)
all_words.extend(w)
xy.append((w, tag))
all_words = [stem(w) for w in all_words if w not in ignore_words]
all_words = sorted(set(all_words))
tags = sorted(set(tags))
X_train = []
Y_train = []
for (pattern_sentence, tag) in xy:
bag = bag_of_words(pattern_sentence, all_words)
X_train.append(bag) # Feature Set
label = tags.index(tag)
Y_train.append(label) # Label Set
X_train = np.array(X_train)
Y_train = np.array(Y_train)
class ChatDataSet(Dataset):
def __init__(self):
self.n_samples = len(X_train)
self.x_data = X_train
self.y_data = Y_train
# dataset(idx)
def __getitem__(self, index):
return (self.x_data[index], self.y_data[index])
def __len__(self):
return self.n_samples
# Hyperparameters
batch_size = 8
hidden_size = 8
output_size = len(tags)
input_size = len(X_train[0])
learning_rate = 0.001
num_epochs = 1000
dataset = ChatDataSet()
train_loader = DataLoader(
dataset=dataset, batch_size=batch_size, shuffle=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeuralNet(input_size, hidden_size, output_size)
# Measures the performance of the classification model (loss)
# Greater Cross Entropy Loss means greater probability divergence from the actual label
criterion = nn.CrossEntropyLoss()
# Model Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Repeatedly trains the model for a set amount of times
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(device)
# Forward Pass Step for the Neural Network
outputs = model(words)
loss = criterion(outputs, labels.long())
# Emptying the gradients before beginning backward pass
optimizer.zero_grad()
# Backward Pass Step for the Neural Network
loss.backward()
# update the parameters by gradient descent
optimizer.step()
# Print results after every 100 epochs
if (epoch + 1) % 100 == 0:
print(f'epoch {epoch+1}/{num_epochs}, loss={loss.item():.4f}')
print(colored("<-- Model Training Completed -->", "red"))
print(f'\nFinal loss, loss={loss.item():.4f}')
# Save the data into a file so that the chatbot can use it later
data = {
"model_state": model.state_dict(),
"input_size": input_size,
"output_size": output_size,
"hidden_size": hidden_size,
"all_words": all_words,
"tags": tags,
"intent_file": intent_file
}
FILE = "data.pth"
torch.save(data, FILE)
print(f"Training Data saved to", colored(FILE, "green"))