-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
symmetric kernel experimentation notebook (#9)
- Loading branch information
Showing
1 changed file
with
394 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,394 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "0", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import dask.array as da\n", | ||
"import healpy as hp\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"import healpix_convolution as hc" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import folium\n", | ||
"import matplotlib.pyplot as plt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "2", | ||
"metadata": { | ||
"jp-MarkdownHeadingCollapsed": true | ||
}, | ||
"source": [ | ||
"## experimentation" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"resolution = 4\n", | ||
"cell_ids = np.arange(12 * 4**resolution)\n", | ||
"indexing_scheme = \"nested\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"truncate = 4\n", | ||
"sigma = 0.1 # in radians\n", | ||
"cell_distance = hp.nside2resol(2**resolution, arcmin=False)\n", | ||
"ring = int((truncate * sigma / cell_distance) // 2)\n", | ||
"\n", | ||
"neighbours = hc.neighbours(\n", | ||
" cell_ids, resolution=resolution, indexing_scheme=indexing_scheme, ring=ring\n", | ||
")\n", | ||
"distances = hc.angular_distances(\n", | ||
" neighbours, resolution=resolution, indexing_scheme=indexing_scheme\n", | ||
")\n", | ||
"mask = neighbours == -1\n", | ||
"\n", | ||
"sigma2 = sigma * sigma\n", | ||
"phi_x = np.where(mask, 0, np.exp(-0.5 / sigma2 * distances**2))\n", | ||
"kernel = phi_x / phi_x.sum(axis=-1)[:, None]\n", | ||
"kernel.shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import sparse" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"mask = np.reshape(neighbours, -1) != -1\n", | ||
"coords = np.reshape(\n", | ||
" np.stack(\n", | ||
" [\n", | ||
" np.repeat(cell_ids[:, None], repeats=neighbours.shape[-1], axis=-1),\n", | ||
" neighbours,\n", | ||
" ],\n", | ||
" axis=0,\n", | ||
" ),\n", | ||
" (2, -1),\n", | ||
")\n", | ||
"\n", | ||
"kernel_ = np.reshape(kernel, -1)[mask]\n", | ||
"coords_ = np.reshape(coords, (2, -1))[:, mask]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"kernel_matrix = sparse.COO(\n", | ||
" data=kernel_, coords=coords_, shape=(cell_ids.size, cell_ids.size), fill_value=0\n", | ||
")\n", | ||
"kernel_matrix" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "8", | ||
"metadata": {}, | ||
"source": [ | ||
"## dask awareness" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"resolution = 4\n", | ||
"kernel_size = 3\n", | ||
"indexing_scheme = \"ring\"\n", | ||
"sigma = 0.1\n", | ||
"\n", | ||
"cell_ids = da.arange(12 * 4**resolution, chunks=(1000,))\n", | ||
"cell_ids" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "10", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"cell_ids_ = np.reshape(cell_ids, (-1,))\n", | ||
"\n", | ||
"# TODO: figure out whether there is a better way of defining the units of `sigma`\n", | ||
"if kernel_size is not None:\n", | ||
" ring = int(kernel_size / 2)\n", | ||
"else:\n", | ||
" cell_distance = hp.nside2resol(2**resolution, arcmin=False)\n", | ||
" ring = int((truncate * sigma / cell_distance) // 2)\n", | ||
"\n", | ||
"nb = hc.neighbours(\n", | ||
" cell_ids_, resolution=resolution, indexing_scheme=indexing_scheme, ring=ring\n", | ||
")\n", | ||
"d = hc.angular_distances(nb, resolution=resolution, indexing_scheme=indexing_scheme)\n", | ||
"\n", | ||
"sigma2 = sigma * sigma\n", | ||
"phi_x = np.exp(-0.5 / sigma2 * d**2)\n", | ||
"masked = np.where(nb == -1, 0, phi_x)\n", | ||
"normalized = masked / np.sum(masked, axis=1, keepdims=True)\n", | ||
"normalized" | ||
] | ||
}, | ||
{ | ||
"cell_type": "raw", | ||
"id": "11", | ||
"metadata": {}, | ||
"source": [ | ||
"da.map_blocks?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "12", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import sparse" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "13", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"cell_ids__ = np.repeat(cell_ids_[:, None], axis=-1, repeats=nb.shape[1])\n", | ||
"cell_ids__" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "14", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"?da.map_blocks" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "15", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"cell_ids__.chunks" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "16", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"shape = (1000, cell_ids.size)\n", | ||
"matrix = da.map_blocks(\n", | ||
" hc.kernels.common.create_sparse,\n", | ||
" cell_ids__,\n", | ||
" nb,\n", | ||
" normalized,\n", | ||
" shape=shape,\n", | ||
" meta=sparse.COO.from_numpy(np.array((), dtype=\"float64\")),\n", | ||
" drop_axis=1,\n", | ||
" new_axis=1,\n", | ||
" chunks=(cell_ids__.chunks[0], cell_ids.size),\n", | ||
")\n", | ||
"matrix" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "17", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"display(cell_ids__, nb, normalized)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "18", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"matrix.compute()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "19", | ||
"metadata": {}, | ||
"source": [ | ||
"## module version" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "20", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"resolution = 3\n", | ||
"cell_ids = np.arange(12 * 4**resolution)\n", | ||
"indexing_scheme = \"nested\"\n", | ||
"sigma = 0.1\n", | ||
"truncate = 4.0" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "21", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%%time\n", | ||
"kernel = hc.kernels.gaussian_kernel(\n", | ||
" cell_ids,\n", | ||
" resolution=resolution,\n", | ||
" indexing_scheme=indexing_scheme,\n", | ||
" sigma=sigma,\n", | ||
" truncate=truncate,\n", | ||
")\n", | ||
"kernel" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "22", | ||
"metadata": {}, | ||
"source": [ | ||
"### verification" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "23", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"norm = np.sum(kernel, axis=1).todense()\n", | ||
"norm" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "24", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fig, ax = plt.subplots(figsize=(14, 14))\n", | ||
"\n", | ||
"mappable = ax.imshow(kernel.todense())\n", | ||
"fig.colorbar(mappable)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "25", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"kernel_ = kernel[0, :].todense()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "26", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import healpy as hp" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "27", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"hp.newvisufunc.projview(kernel_, nest=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "28", | ||
"metadata": {}, | ||
"source": [ | ||
"- subdomain convolution\n", | ||
"- image pyramid (up/downgrading)\n", | ||
"- neighbour ordering\n", | ||
"- chunked kernel" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |