A Prior Instruction Representation Framework for Remote Sensing Image-text Retrieval. Jiancheng Pan, Qing Ma, Cong Bai*. ACM MM 2023.
Basic code to thank X-VLM by Zeng et al.
This paper presents a prior instruction representation framework (PIR) for remote sensing image-text retrieval, aimed at remote sensing vision-language understanding tasks to solve the semantic noise problem. Our highlight is the proposal of a paradigm that draws on prior knowledge to instruct adaptive learning of vision and text representations. Concretely, two progressive attention encoder (PAE) structures, Spatial-PAE and Temporal-PAE, are proposed to perform long-range dependency modeling to enhance key feature representation. In vision representation, Vision Instruction Representation (VIR) based on Spatial-PAE exploits the prior-guided knowledge of the remote sensing scene recognition by building a belief matrix to select key features for reducing the impact of semantic noise. In text representation, Language Cycle Attention (LCA) based on Temporal-PAE uses the previous time step to cyclically activate the current time step to enhance text representation capability. A cluster-wise affiliation loss is proposed to constrain the inter-classes and to reduce the semantic confusion zones in the common subspace. Comprehensive experiments demonstrate that using prior knowledge instruction could enhance vision and text representations and could outperform the state-of-the-art methods on two benchmark datasets, RSICD and RSITMD.
The directory hierarchy is shown below, where the checkpoints and data files can be downloaded from here [Baidu Disk] .
.
├── checkpoints
│ └── PIR
│ ├── full_rsicd
│ │ ├── checkpoint_49.pth
│ │ ├── checkpoint_best.pth
│ │ ├── config.yaml
│ │ └── log.txt
│ └── full_rsitmd
│ ├── checkpoint_49.pth
│ ├── checkpoint_best.pth
│ ├── config.yaml
│ └── log.txt
├── configs
│ ├── config_bert.json
│ ├── config_swinT_224.json
│ ├── Retrieval_rsicd.yaml
│ └── Retrieval_rsitmd.yaml
├── data
├── dataset
├── models
├── utils
├── mytools.py
├── optim.py
├── Pretrain.py
├── Retrieval.py
├── run.py
├── scheduler.py
└── requirements.txt
Install
pip install -r requirements.txt
Train
python run.py --task 'itr_rsitmd' --dist "f2" --config 'configs/Retrieval_rsitmd.yaml' --output_dir './checkpoints/PIR/full_rsitmd'
python run.py --task 'itr_rsicd' --dist "f2" --config 'configs/Retrieval_rsicd.yaml' --output_dir './checkpoints/PIR/full_rsicd'
Test
python run.py --task 'itr_rsitmd' --dist "f2" --config 'configs/Retrieval_rsitmd.yaml' --output_dir './checkpoints/PIR/test' --checkpoint './checkpoints/PIR/full_rsitmd/checkpoint_best.pth' --evaluate
python run.py --task 'itr_rsicd' --dist "f2" --config 'configs/Retrieval_rsicd.yaml' --output_dir './checkpoints/PIR/test' --checkpoint './checkpoints/PIR/full_rsicd/checkpoint_best.pth' --evaluate
All experiments are based on RSITMD and RSICD datasets.
If you find this code useful for your work or use it in your project, please consider citing:
--waiting--