Skip to content

Commit

Permalink
Update rnn example to use the Module API from v3.0
Browse files Browse the repository at this point in the history
Note the placeholder tensors for the input data and labels
should be reused after the first iteration.
TODO test model.graph(True, False).
  • Loading branch information
nudles committed Apr 12, 2020
1 parent d66c14b commit e2fedf9
Show file tree
Hide file tree
Showing 5 changed files with 176 additions and 179 deletions.
2 changes: 1 addition & 1 deletion RELEASE_NOTES
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ This release includes following changes:
After analyzing the dependency, the computational graph is created, which is further analyzed for
speed and memory optimization. To enable this feature, use the [Module API](./python/singa/module.py).

* New website based on Docusaurus. The documentation files are moved to a separate repo [singa-doc]](https://github.com/apache/singa-doc).
* New website based on Docusaurus. The documentation files are moved to a separate repo [singa-doc](https://github.com/apache/singa-doc).
The static website files are stored at [singa-site](https://github.com/apache/singa-site).

* DNNL([Deep Neural Network Library](https://github.com/intel/mkl-dnn)), powered by Intel,
Expand Down
12 changes: 1 addition & 11 deletions examples/rnn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,14 +24,10 @@ application (or model) using SINGA's RNN layers.
We will use the [char-rnn](https://github.com/karpathy/char-rnn) model as an
example, which trains over sentences or
source code, with each character as an input unit. Particularly, we will train
a RNN using GRU over Linux kernel source code. After training, we expect to
generate meaningful code from the model.

a RNN over Linux kernel source code.

## Instructions

* Compile and install SINGA. Currently the RNN implementation depends on Cudnn with version >= 5.05.

* Prepare the dataset. Download the [kernel source code](http://cs.stanford.edu/people/karpathy/char-rnn/).
Other plain text files can also be used.

Expand All @@ -42,9 +38,3 @@ Other plain text files can also be used.
Some hyper-parameters could be set through command line,

python train.py -h

* Sample characters from the model by providing the number of characters to sample and the seed string.

python sample.py 'model.bin' 100 --seed '#include <std'

Please replace 'model.bin' with the path to one of the checkpoint paths.
285 changes: 146 additions & 139 deletions examples/rnn/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,26 +20,55 @@
e.g., http://cs.stanford.edu/people/karpathy/char-rnn/
'''


from __future__ import division
from __future__ import print_function
from builtins import zip
from builtins import range
from builtins import object
import pickle as pickle
import numpy as np
import sys
import argparse
from tqdm import tqdm

from singa import layer
from singa import loss
from singa import device
from singa import tensor
from singa import optimizer
from singa import initializer
from singa import utils
from singa import autograd
from singa import module
from singa import opt


class CharRNN(module.Module):

def __init__(self, vocab_size, hidden_size=32):
super(CharRNN, self).__init__()
self.rnn = autograd.LSTM(vocab_size, hidden_size)
self.dense = autograd.Linear(hidden_size, vocab_size)
self.optimizer = opt.SGD(0.01)
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.hx = tensor.Tensor((1, self.hidden_size))
self.cx = tensor.Tensor((1, self.hidden_size))

def reset_states(self, dev):
self.hx.to_device(dev)
self.cx.to_device(dev)
self.hx.set_value(0.0)
self.cx.set_value(0.0)

def forward(self, inputs):
x, self.hx, self.cx = self.rnn(inputs, (self.hx, self.cx))
x = autograd.cat(x)
x = autograd.reshape(x, (-1, self.hidden_size))
return self.dense(x)

def loss(self, out, ty):
ty = autograd.reshape(ty, (-1, 1))
return autograd.softmax_cross_entropy(out, ty)

def optim(self, loss):
self.optimizer.backward_and_update(loss)


class Data(object):

def __init__(self, fpath, batch_size=32, seq_length=100, train_ratio=0.8):
'''Data object for loading a plain text file.
Expand All @@ -48,44 +77,57 @@ def __init__(self, fpath, batch_size=32, seq_length=100, train_ratio=0.8):
train_ratio, split the text file into train and test sets, where
train_ratio of the characters are in the train set.
'''
self.raw_data = open(fpath, 'r',encoding='iso-8859-1').read() # read text file
self.raw_data = open(fpath, 'r',
encoding='iso-8859-1').read() # read text file
chars = list(set(self.raw_data))
self.vocab_size = len(chars)
self.char_to_idx = {ch: i for i, ch in enumerate(chars)}
self.idx_to_char = {i: ch for i, ch in enumerate(chars)}
data = [self.char_to_idx[c] for c in self.raw_data]
# seq_length + 1 for the data + label
nsamples = len(data) // (1 + seq_length)
data = data[0:nsamples * (1 + seq_length)]
data = data[0:300 * (1 + seq_length)]
data = np.asarray(data, dtype=np.int32)
data = np.reshape(data, (-1, seq_length + 1))
# shuffle all sequences
np.random.shuffle(data)
self.train_dat = data[0:int(data.shape[0]*train_ratio)]
self.train_dat = data[0:int(data.shape[0] * train_ratio)]
self.num_train_batch = self.train_dat.shape[0] // batch_size
self.val_dat = data[self.train_dat.shape[0]:]
self.num_test_batch = self.val_dat.shape[0] // batch_size
print('train dat', self.train_dat.shape)
print('val dat', self.val_dat.shape)


def numpy2tensors(npx, npy, dev):
def numpy2tensors(npx, npy, dev, inputs=None, labels=None):
'''batch, seq, dim -- > seq, batch, dim'''
tmpy = np.swapaxes(npy, 0, 1).reshape((-1, 1))
if labels:
labels.copy_from_numpy(tmpy)
else:
labels = tensor.from_numpy(tmpy)
labels.to_device(dev)
tmpx = np.swapaxes(npx, 0, 1)
tmpy = np.swapaxes(npy, 0, 1)
inputs = []
labels = []
inputs_ = []
for t in range(tmpx.shape[0]):
x = tensor.from_numpy(tmpx[t])
y = tensor.from_numpy(tmpy[t])
x.to_device(dev)
y.to_device(dev)
inputs.append(x)
labels.append(y)
if inputs:
inputs[t].copy_from_numpy(tmpx[t])
else:
x = tensor.from_numpy(tmpx[t])
x.to_device(dev)
inputs_.append(x)
if not inputs:
inputs = inputs_
return inputs, labels


def convert(batch, batch_size, seq_length, vocab_size, dev):
def convert(batch,
batch_size,
seq_length,
vocab_size,
dev,
inputs=None,
labels=None):
'''convert a batch of data into a sequence of input tensors'''
y = batch[:, 1:]
x1 = batch[:, :seq_length]
Expand All @@ -94,127 +136,90 @@ def convert(batch, batch_size, seq_length, vocab_size, dev):
for t in range(seq_length):
c = x1[b, t]
x[b, t, c] = 1
return numpy2tensors(x, y, dev)


def get_lr(epoch):
return 0.001 / float(1 << (epoch // 50))


def train(data, max_epoch, hidden_size=100, seq_length=100, batch_size=16,
num_stacks=1, dropout=0.5, model_path='model'):
return numpy2tensors(x, y, dev, inputs, labels)


def sample(model, data, dev, nsamples=100, use_max=False):
while True:
cmd = input('Do you want to sample text from the model [y/n]')
if cmd == 'n':
return
else:
seed = input('Please input some seeding text, e.g., #include <c: ')
inputs = []
for c in seed:
x = np.zeros((1, data.vocab_size), dtype=np.float32)
x[0, data.char_to_idx[c]] = 1
tx = tensor.from_numpy(x)
tx.to_device(dev)
inputs.append(tx)
model.reset_states(dev)
outputs = model(inputs)
y = tensor.softmax(outputs[-1])
sys.stdout.write(seed)
for i in range(nsamples):
prob = tensor.to_numpy(y)[0]
if use_max:
cur = np.argmax(prob)
else:
cur = np.random.choice(data.vocab_size, 1, p=prob)[0]
sys.stdout.write(data.idx_to_char[cur])
x = np.zeros((1, data.vocab_size), dtype=np.float32)
x[0, cur] = 1
tx = tensor.from_numpy(x)
tx.to_device(dev)
outputs = model([tx])
y = tensor.softmax(outputs[-1])


def evaluate(model, data, batch_size, seq_length, dev):
model.eval()
val_loss = 0.0
for b in range(data.num_test_batch):
batch = data.val_dat[b * batch_size:(b + 1) * batch_size]
inputs, labels = convert(batch, batch_size, seq_length, data.vocab_size,
dev)
model.reset_states(dev)
y = model(inputs)
loss = model.loss(y, labels)[0]
val_loss += tensor.to_numpy(loss)[0]
print(' validation loss is %f' %
(val_loss / data.num_test_batch / seq_length))


def train(data,
max_epoch,
hidden_size=100,
seq_length=100,
batch_size=16,
model_path='model'):
# SGD with L2 gradient normalization
opt = optimizer.RMSProp(constraint=optimizer.L2Constraint(5))
cuda = device.create_cuda_gpu()
rnn = layer.LSTM(
name='lstm',
hidden_size=hidden_size,
num_stacks=num_stacks,
dropout=dropout,
input_sample_shape=(
data.vocab_size,
))
rnn.to_device(cuda)
print('created rnn')
rnn_w = rnn.param_values()[0]
rnn_w.uniform(-0.08, 0.08) # init all rnn parameters
print('rnn weight l1 = %f' % (rnn_w.l1()))
dense = layer.Dense(
'dense',
data.vocab_size,
input_sample_shape=(
hidden_size,
))
dense.to_device(cuda)
dense_w = dense.param_values()[0]
dense_b = dense.param_values()[1]
print('dense w ', dense_w.shape)
print('dense b ', dense_b.shape)
initializer.uniform(dense_w, dense_w.shape[0], 0)
print('dense weight l1 = %f' % (dense_w.l1()))
dense_b.set_value(0)
print('dense b l1 = %f' % (dense_b.l1()))

g_dense_w = tensor.Tensor(dense_w.shape, cuda)
g_dense_b = tensor.Tensor(dense_b.shape, cuda)

lossfun = loss.SoftmaxCrossEntropy()
model = CharRNN(data.vocab_size, hidden_size)
model.on_device(cuda)
model.graph(True, True)

inputs, labels = None, None

for epoch in range(max_epoch):
model.train()
train_loss = 0
for b in range(data.num_train_batch):
batch = data.train_dat[b * batch_size: (b + 1) * batch_size]
for b in tqdm(range(data.num_train_batch)):
batch = data.train_dat[b * batch_size:(b + 1) * batch_size]
inputs, labels = convert(batch, batch_size, seq_length,
data.vocab_size, cuda)
inputs.append(tensor.Tensor())
inputs.append(tensor.Tensor())

outputs = rnn.forward(True, inputs)[0:-2]
grads = []
batch_loss = 0
g_dense_w.set_value(0.0)
g_dense_b.set_value(0.0)
for output, label in zip(outputs, labels):
act = dense.forward(True, output)
lvalue = lossfun.forward(True, act, label)
batch_loss += lvalue.l1()
grad = lossfun.backward()
grad /= batch_size
grad, gwb = dense.backward(True, grad)
grads.append(grad)
g_dense_w += gwb[0]
g_dense_b += gwb[1]
# print output.l1(), act.l1()
utils.update_progress(
b * 1.0 / data.num_train_batch, 'training loss = %f' %
(batch_loss / seq_length))
train_loss += batch_loss

grads.append(tensor.Tensor())
grads.append(tensor.Tensor())
g_rnn_w = rnn.backward(True, grads)[1][0]
dense_w, dense_b = dense.param_values()
opt.apply_with_lr(epoch, get_lr(epoch), g_rnn_w, rnn_w, 'rnnw')
opt.apply_with_lr(
epoch, get_lr(epoch),
g_dense_w, dense_w, 'dense_w')
opt.apply_with_lr(
epoch, get_lr(epoch),
g_dense_b, dense_b, 'dense_b')
data.vocab_size, cuda, inputs, labels)
model.reset_states(cuda)
y = model(inputs)
loss = model.loss(y, labels)
model.optim(loss)
train_loss += tensor.to_numpy(loss)[0]

print('\nEpoch %d, train loss is %f' %
(epoch, train_loss / data.num_train_batch / seq_length))

eval_loss = 0
for b in range(data.num_test_batch):
batch = data.val_dat[b * batch_size: (b + 1) * batch_size]
inputs, labels = convert(batch, batch_size, seq_length,
data.vocab_size, cuda)
inputs.append(tensor.Tensor())
inputs.append(tensor.Tensor())
outputs = rnn.forward(False, inputs)[0:-2]
for output, label in zip(outputs, labels):
output = dense.forward(True, output)
eval_loss += lossfun.forward(True, output, label).l1()
print('Epoch %d, evaluation loss is %f' %
(epoch, eval_loss / data.num_test_batch / seq_length))

if (epoch + 1) % 30 == 0:
# checkpoint the file model
with open('%s_%d.bin' % (model_path, epoch), 'wb') as fd:
print('saving model to %s' % model_path)
d = {}
for name, w in zip(
['rnn_w', 'dense_w', 'dense_b'],
[rnn_w, dense_w, dense_b]):
w.to_host()
d[name] = tensor.to_numpy(w)
w.to_device(cuda)
d['idx_to_char'] = data.idx_to_char
d['char_to_idx'] = data.char_to_idx
d['hidden_size'] = hidden_size
d['num_stacks'] = num_stacks
d['dropout'] = dropout

pickle.dump(d, fd)
# evaluate(model, data, batch_size, seq_length, cuda, inputs, labels)
# sample(model, data, cuda)


if __name__ == '__main__':
parser = argparse.ArgumentParser(
Expand All @@ -224,9 +229,11 @@ def train(data, max_epoch, hidden_size=100, seq_length=100, batch_size=16,
parser.add_argument('-b', type=int, default=32, help='batch_size')
parser.add_argument('-l', type=int, default=64, help='sequence length')
parser.add_argument('-d', type=int, default=128, help='hidden size')
parser.add_argument('-s', type=int, default=2, help='num of stacks')
parser.add_argument('-m', type=int, default=50, help='max num of epoch')
args = parser.parse_args()
data = Data(args.data, batch_size=args.b, seq_length=args.l)
train(data, args.m, hidden_size=args.d, num_stacks=args.s,
seq_length=args.l, batch_size=args.b)
train(data,
args.m,
hidden_size=args.d,
seq_length=args.l,
batch_size=args.b)
Loading

0 comments on commit e2fedf9

Please sign in to comment.