Skip to content

HPAC/LinearAlgebra-Awareness-Benchmark

Repository files navigation

LinearAlgebra-Awareness-Benchmark

Prerequisites

TensorFlow and PyTorch with MKL support

TensorFlow: Installation instructions

PyTorch: Installation instructions

Running the Experiments

More details in the respective experiment folders

Performance on Intel Xeon Platinum 8160 CPU:

Number of Threads: 1
Reporting statistic: Minimum of 20 repetitions.
TensorFlow Version: 2.7.0
PyTorch Version: 1.10.0
MKL: Intel OneAPI 2022.0.0

Performance comparision: Eager mode vs Graph mode

Operands

A and B are general square matrices of size 3000

File Expression C TF (Eager) PyT (Eager) TF (Graph) PyT (Graph)
sgemm ATB 0.39 0.40 0.40 0.40 0.40
cse (ATB)T(ATB) - 1.25 1.27 0.78 0.80

Experiment 1 : Common Subexpression Elimination

Operands

A and B are general square matrices of size 3000

File Expression TF PyT
sgemm ATB 0.40 0.40
cse_add ATB + ATB 0.40 0.41
cse_mul_parenthesis (ATB)T(ATB) 0.78 0.80
cse_mul_no_parenthesis (ATB)TATB 1.17 1.15

Experiment 2: Optimization of Matrix Chains

Operands

H is a square matrix of size 3000

x,y are vectors of size 3000

Right to Left Parenthesization

File Expression TF (matmul) PyT (matmul) PyT (multi_dot)
no_parenthesis HTHx 0.40 0.41 0.006
rtol_parenthesis HT(Hx) 0.006 0.004 -

Left to Right Parenthesization

File Expression TF (matmul) PyT (matmul) PyT (multi_dot)
no_parenthesis yTHTH 0.006 0.005 0.005
ltor_parenthesis (yTH)TH 0.006 0.005 -

Mixed Parenthesization

File Expression TF (matmul) PyT (matmul) PyT (multi_dot)
no_parenthesis HTyxTH 0.41 0.40 0.01
mixed_parenthesis (HTy)(xTH) 0.01 0.01 -

Experiment 3: Matrix Properties

Matrix multiplication AB with matrices having special properties

A : General Matrix

L : Lower Triangular Matrix

T : Tridiagonal Matrix

D : Diagonal Matrix

Operands : A,L,T,D are square matrices of size 3000.

File Expression SciPy (blas) TF (matmul) TF (optimized) PyT (matmul) PyT (optimized)
sgemm AB 0.40 0.40 - 0.41 -
trmm LB 0.24 0.40 n.a 0.40 n.a
syrk AAT 0.24 0.41 n.a 0.39 n.a
tridiagmm TB 0.20 0.41 0.02 0.40 n.a
diagmm DB 0.12 0.39 0.018 0.40 n.a

Experiment 4: Algebraic Manipulations

Operands:

Distributivity: A and B are General square matrices of size 3000.

Blocked matrices: AB = [[A1, 0], [0, A1]], BB = [[B1, 0], [0, B1]]

File Expression TF (LHS / RHS) PyT (LHS / RHS)
distributivity_eq9 AB + AC = A(B+C) 0.78 / 0.40 0.81 / 0.41
distributivity_eq10 Ax - HT(Hx) = (A - HTH)x 0.01 / 0.42 0.01 / 0.41
blocked_matrices ABBB = [(A1B1),(A1B1)]T 0.40 / 0.20 0.40 / 0.20

Experiment 5: Code Motion

Operands:

A and B are general square marices of size 3000

V is a 3x3000

File Expression TF (naive / recommended) PyT (naive / recommended)
loop_inv for i in range(3): AB + V[i]V[i]T 0.42 / 0.42 0.42 / 0.41
partial_op_sum (A+B)[2,2] 0.011 / 6e-4 0.018 / 2e-3
partial_op_prod (AB)[2,2] 0.39 / 2e-3 0.40 / 3e-3

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published