Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: the configurations for Vector #1406

Merged
merged 3 commits into from
Dec 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .github/scripts/check-front-matter.js
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,9 @@ async function checkMarkdownFiles() {
});

// Filter to get only markdown files
const markdownFiles = files.filter(file => file.filename.endsWith('.md'));
const markdownFiles = files.filter(file =>
file.filename.endsWith('.md') && file.status !== 'removed'
);

let allValid = true;

Expand Down
19 changes: 0 additions & 19 deletions docs/db-cloud-shared/clients/vector-integration.md

This file was deleted.

29 changes: 16 additions & 13 deletions docs/user-guide/ingest-data/for-observerbility/vector.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,16 +3,17 @@ keywords: [Vector, integration, configuration, data model, metrics]
description: Instructions for integrating Vector with GreptimeDB, including configuration, data model mapping, and example configurations.
---

import DocTemplate from '../../../db-cloud-shared/clients/vector-integration.md'


# Vector

<DocTemplate>
Vector is [a high performance observability data
pipeline](https://vector.dev). It has native support for GreptimeDB metrics data
sink. With vector, you can ingest metrics data from various sources, including
Prometheus, OpenTelemetry, StatsD and many more.
GreptimeDB can be used as a Vector Sink component to receive metrics.

<div id="toml-config">
## Collect metrics

## Integration
### Configuration

A minimal configuration of when using your GreptimeDB instance can be:

Expand All @@ -24,7 +25,7 @@ type = "host_metrics"

[sinks.my_sink_id]
inputs = ["in"]
type = "greptimedb"
type = "greptimedb_metrics"
endpoint = "<host>:4001"
dbname = "<dbname>"
username = "<username>"
Expand All @@ -35,11 +36,16 @@ new_naming = true
GreptimeDB uses gRPC to communicate with Vector, so the default port for the Vector sink is `4001`.
If you have changed the default gRPC port when starting GreptimeDB with [custom configurations](/user-guide/deployments/configuration.md#configuration-file), use your own port instead.

</div>
Execute Vector with:

```
vector -c sample.toml
```

<div id="data-model">
For more configuration options, see [Vector GreptimeDB
Configuration](https://vector.dev/docs/reference/configuration/sinks/greptimedb_metrics/).

## Data Model
### Data Model

The following rules are used when storing Vector metrics into GreptimeDB:

Expand All @@ -54,6 +60,3 @@ The following rules are used when storing Vector metrics into GreptimeDB:
- For AggregatedSummary metrics, the values of each percentile are stored in the `pxx` column, where xx is the percentile, and the `sum/count` columns are also stored;
- For Sketch metrics, the values of each percentile are stored in the `pxx` column, where xx is the percentile, and the `min/max/avg/sum` columns are also stored;

</div>

</DocTemplate>

This file was deleted.

Original file line number Diff line number Diff line change
Expand Up @@ -3,18 +3,16 @@ keywords: [Vector, 数据写入, gRPC 通信, 数据模型, 配置示例]
description: 介绍如何使用 Vector 将数据写入 GreptimeDB,包括最小配置示例和数据模型的映射规则。
---

import DocTemplate from '../../../db-cloud-shared/clients/vector-integration.md'


# Vector

<DocTemplate>
Vector 是高性能的可观测数据管道。
它原生支持 GreptimeDB 指标数据接收端。
通过 Vector,你可以从各种来源接收指标数据,包括 Prometheus、OpenTelemetry、StatsD 等。
GreptimeDB 可以作为 Vector 的 Sink 组件来接收指标数据。

[Vector](https://vector.dev/) 是一种高性能的可以帮助工程师控制可观测性数据的通道工具。我们的 Vector 集成页面在[这里](https://vector.dev/docs/reference/configuration/sinks/greptimedb/)。
## 收集指标

<div id="toml-config">

## 集成
### 配置

使用 GreptimeDB 的 Vector 集成的最小配置如下:

Expand All @@ -26,7 +24,7 @@ type = "host_metrics"

[sinks.my_sink_id]
inputs = ["in"]
type = "greptimedb"
type = "greptimedb_metrics"
endpoint = "<host>:4001"
dbname = "<dbname>"
username = "<username>"
Expand All @@ -37,11 +35,15 @@ new_naming = true
GreptimeDB 使用 gRPC 与 Vector 进行通信,因此 Vector sink 的默认端口是 `4001`。
如果你在使用 [自定义配置](/user-guide/deployments/configuration.md#configuration-file) 启动 GreptimeDB 时更改了默认的 gRPC 端口,请使用你自己的端口。

</div>
启动 Vector:

```
vector -c sample.toml
```

<div id="data-model">
请前往 [Vector GreptimeDB Configuration](https://vector.dev/docs/reference/configuration/sinks/greptimedb_metrics/) 查看更多配置项。

## 数据模型
### 数据模型

我们使用这样的规则将 Vector 指标存入 GreptimeDB:

Expand All @@ -55,7 +57,3 @@ GreptimeDB 使用 gRPC 与 Vector 进行通信,因此 Vector sink 的默认端
- AggregatedHistoragm 类型,每个 bucket 的数值将被存入 `bxx` 列,其中 xx 是 bucket 数值的上限,此外我们还会记录 `sum/count` 列;
- AggregatedSummary 类型,各个百分位数值点分别存入 `pxx` 列,其中 xx 是 quantile 数值,此外我们还会记录 `sum/count` 列;
- Sketch 类型,各个百分位数值点分别存入 `pxx` 列,其中 xx 是 quantile 数值,此外我们还会记录 `min/max/avg/sum` 列;

</div>

</DocTemplate>
Loading