Source Code for ICASSP'24 paper: GCIA: A BLACK-BOX GRAPH INJECTION ATTACK METHOD VIA GRAPH CONTRASTIVE LEARNING
- Dataset:
- Cora, Citeseer and PubMed datasets can be found in torch_geometric.datasets.Planetoid
- Reddit-12k dataset can be found in G-NIA, put ''12k_reddit.npz'' and ''12k_reddit_split.npy'' to ''datasets/Reddit12k'':
- The required packages are as follows:
- Python 3.8+
- PyTorch 1.9+
- PyTorch-Geometric 1.7
- DGL 0.7+
- Scikit-learn 0.24+
- Numpy
- tqdm
- NetworkX
- Running:
- First train gnns, use '' python data_model_prepare.py ''
- Then perform attack with GCIA, use '' pthon GCIA.py --dataset $dataset_name --model_name $target_model ''