forked from FIRST-Tech-Challenge/FtcRobotController
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Used TFOD sample to detect the white pixel
- Loading branch information
Showing
2 changed files
with
154 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
154 changes: 154 additions & 0 deletions
154
TeamCode/src/main/java/org/firstinspires/ftc/teamcode/utility/WhitePixelSpikeDetection.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
package org.firstinspires.ftc.teamcode.utility; | ||
|
||
import com.qualcomm.robotcore.eventloop.opmode.Autonomous; | ||
import com.qualcomm.robotcore.eventloop.opmode.Disabled; | ||
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode; | ||
import com.qualcomm.robotcore.eventloop.opmode.TeleOp; | ||
import org.firstinspires.ftc.robotcore.external.hardware.camera.BuiltinCameraDirection; | ||
import org.firstinspires.ftc.robotcore.external.hardware.camera.WebcamName; | ||
import org.firstinspires.ftc.robotcore.external.tfod.Recognition; | ||
import org.firstinspires.ftc.vision.VisionPortal; | ||
import org.firstinspires.ftc.vision.tfod.TfodProcessor; | ||
|
||
import java.util.List; | ||
@Autonomous | ||
public class WhitePixelSpikeDetection extends LinearOpMode { | ||
|
||
private static final boolean USE_WEBCAM = true; // true for webcam, false for phone camera | ||
|
||
// TFOD_MODEL_FILE points to a model file stored onboard the Robot Controller's storage, | ||
// this is used when uploading models directly to the RC using the model upload interface. | ||
private static final String TFOD_MODEL_ASSET = "whitePixel.tflite"; | ||
// Define the labels recognized in the model for TFOD (must be in training order!) | ||
private static final String[] LABELS = { | ||
"WhitePixel", | ||
}; | ||
|
||
/** | ||
* The variable to store our instance of the TensorFlow Object Detection processor. | ||
*/ | ||
private TfodProcessor tfod; | ||
private VisionPortal visionPortal; | ||
|
||
@Override | ||
public void runOpMode() { | ||
|
||
initTfod(); | ||
|
||
// Wait for the DS start button to be touched. | ||
telemetry.addData("DS preview on/off", "3 dots, Camera Stream"); | ||
telemetry.addData(">", "Touch Play to start OpMode"); | ||
telemetry.update(); | ||
waitForStart(); | ||
|
||
if (opModeIsActive()) { | ||
while (opModeIsActive()) { | ||
|
||
telemetryTfod(); | ||
|
||
// Push telemetry to the Driver Station. | ||
telemetry.update(); | ||
|
||
// Save CPU resources; can resume streaming when needed. | ||
if (gamepad1.dpad_down) { | ||
visionPortal.stopStreaming(); | ||
} else if (gamepad1.dpad_up) { | ||
visionPortal.resumeStreaming(); | ||
} | ||
|
||
// Share the CPU. | ||
sleep(20); | ||
} | ||
} | ||
|
||
// Save more CPU resources when camera is no longer needed. | ||
visionPortal.close(); | ||
|
||
} // end runOpMode() | ||
|
||
/** | ||
* Initialize the TensorFlow Object Detection processor. | ||
*/ | ||
private void initTfod() { | ||
|
||
// Create the TensorFlow processor by using a builder. | ||
tfod = new TfodProcessor.Builder() | ||
|
||
// With the following lines commented out, the default TfodProcessor Builder | ||
// will load the default model for the season. To define a custom model to load, | ||
// choose one of the following: | ||
// Use setModelAssetName() if the custom TF Model is built in as an asset (AS only). | ||
// Use setModelFileName() if you have downloaded a custom team model to the Robot Controller. | ||
.setModelAssetName(TFOD_MODEL_ASSET) | ||
//.setModelFileName(TFOD_MODEL_FILE) | ||
|
||
// The following default settings are available to un-comment and edit as needed to | ||
// set parameters for custom models. | ||
.setModelLabels(LABELS) | ||
//.setIsModelTensorFlow2(true) | ||
//.setIsModelQuantized(true) | ||
//.setModelInputSize(300) | ||
//.setModelAspectRatio(16.0 / 9.0) | ||
|
||
.build(); | ||
|
||
// Create the vision portal by using a builder. | ||
VisionPortal.Builder builder = new VisionPortal.Builder(); | ||
|
||
// Set the camera (webcam vs. built-in RC phone camera). | ||
if (USE_WEBCAM) { | ||
builder.setCamera(hardwareMap.get(WebcamName.class, "Webcam 1")); | ||
} else { | ||
builder.setCamera(BuiltinCameraDirection.BACK); | ||
} | ||
|
||
// Choose a camera resolution. Not all cameras support all resolutions. | ||
//builder.setCameraResolution(new Size(640, 480)); | ||
|
||
// Enable the RC preview (LiveView). Set "false" to omit camera monitoring. | ||
//builder.enableLiveView(true); | ||
|
||
// Set the stream format; MJPEG uses less bandwidth than default YUY2. | ||
//builder.setStreamFormat(VisionPortal.StreamFormat.YUY2); | ||
|
||
// Choose whether or not LiveView stops if no processors are enabled. | ||
// If set "true", monitor shows solid orange screen if no processors enabled. | ||
// If set "false", monitor shows camera view without annotations. | ||
//builder.setAutoStopLiveView(false); | ||
|
||
// Set and enable the processor. | ||
builder.addProcessor(tfod); | ||
|
||
// Build the Vision Portal, using the above settings. | ||
visionPortal = builder.build(); | ||
|
||
// Set confidence threshold for TFOD recognitions, at any time. | ||
//tfod.setMinResultConfidence(0.75f); | ||
|
||
// Disable or re-enable the TFOD processor at any time. | ||
//visionPortal.setProcessorEnabled(tfod, true); | ||
|
||
} // end method initTfod() | ||
|
||
/** | ||
* Add telemetry about TensorFlow Object Detection (TFOD) recognitions. | ||
*/ | ||
private void telemetryTfod() { | ||
|
||
List<Recognition> currentRecognitions = tfod.getRecognitions(); | ||
telemetry.addData("# Objects Detected", currentRecognitions.size()); | ||
|
||
// Step through the list of recognitions and display info for each one. | ||
for (Recognition recognition : currentRecognitions) { | ||
double x = (recognition.getLeft() + recognition.getRight()) / 2 ; | ||
double y = (recognition.getTop() + recognition.getBottom()) / 2 ; | ||
|
||
telemetry.addData(""," "); | ||
telemetry.addData("Image", "%s (%.0f %% Conf.)", recognition.getLabel(), recognition.getConfidence() * 100); | ||
telemetry.addData("- Position", "%.0f,%.0f", x, y); | ||
telemetry.addData("- Size", "%.0f x %.0f", recognition.getWidth(), recognition.getHeight()); | ||
} // end for() loop | ||
|
||
} // end method telemetryTfod() | ||
|
||
} // end class |