Skip to content

Commit

Permalink
Merge pull request #6 from Frix-x/develop
Browse files Browse the repository at this point in the history
replaced TwoSlopNorm by a custom norm
to allow older version of matplotlib to be used
  • Loading branch information
Frix-x authored Nov 6, 2023
2 parents 83f5177 + 17ccddf commit 6e88452
Showing 1 changed file with 9 additions and 4 deletions.
13 changes: 9 additions & 4 deletions K-ShakeTune/scripts/graph_belts.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,10 @@
######## CoreXY BELTS CALIBRATION SCRIPT ########
#################################################
# Written by Frix_x#0161 #
# @version: 2.0
# @version: 2.1

# CHANGELOG:
# v2.1: replaced the TwoSlopNorm by a custom made norm to allow the script to work on older versions of matplotlib
# v2.0: updated the script to align it to the new K-Shake&Tune module
# v1.0: first version of this tool for enhanced vizualisation of belt graphs

Expand Down Expand Up @@ -473,9 +474,13 @@ def plot_difference_spectrogram(ax, data1, data2, signal1, signal2, similarity_f
ax.set_title(f"Differential Spectrogram", fontsize=14, color=KLIPPAIN_COLORS['dark_orange'], weight='bold')
ax.plot([], [], ' ', label=f'{textual_mhi} (experimental)')

# Draw the differential spectrogram with a specific norm to get light grey zero values and red for max values (vmin to vcenter is not used)
norm = matplotlib.colors.TwoSlopeNorm(vcenter=np.min(combined_data), vmax=np.max(combined_data))
ax.pcolormesh(bins, t, combined_data.T, cmap='RdBu_r', norm=norm, shading='gouraud')
# Draw the differential spectrogram with a specific custom norm to get white or light orange zero values and red for max values
colors = ['white', 'bisque', 'red', 'black']
n_bins = [0, 0.12, 0.9, 1] # These values where found experimentaly to get a good higlhlighting of the differences only
cm = matplotlib.colors.LinearSegmentedColormap.from_list('WhiteToRed', list(zip(n_bins, colors)))
norm = matplotlib.colors.Normalize(vmin=np.min(combined_data), vmax=np.max(combined_data))
ax.pcolormesh(bins, t, combined_data.T, cmap=cm, norm=norm, shading='gouraud')

ax.set_xlabel('Frequency (hz)')
ax.set_xlim([0., max_freq])
ax.set_ylabel('Time (s)')
Expand Down

0 comments on commit 6e88452

Please sign in to comment.