https://github.com/F64081169/Nvprof_Jetson_Nano_Example/tree/main/yolov4-tiny-profilingResult
- 產生資訊放於yolov4-tiny-profilingResult
def loop_and_detect(cam, trt_yolo, conf_th, vis):
"""Continuously capture images from camera and do object detection.
# Arguments
cam: the camera instance (video source).
trt_yolo: the TRT YOLO object detector instance.
conf_th: confidence/score threshold for object detection.
vis: for visualization.
"""
full_scrn = False
fps = 0.0
tic = time.time()
cu_prof_start() #for nvprof start profiling
while True:
if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
break
img = cam.read()
if img is None:
break
boxes, confs, clss = trt_yolo.detect(img, conf_th)
img = vis.draw_bboxes(img, boxes, confs, clss)
img = show_fps(img, fps)
cv2.imshow(WINDOW_NAME, img)
toc = time.time()
curr_fps = 1.0 / (toc - tic)
# calculate an exponentially decaying average of fps number
fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
tic = toc
key = cv2.waitKey(1)
if key == 27: # ESC key: quit program
break
elif key == ord('F') or key == ord('f'): # Toggle fullscreen
full_scrn = not full_scrn
set_display(WINDOW_NAME, full_scrn)
cu_prof_stop() #for nvprof stop profiling
start profiling function 加於while loop前
stop profiling function 加於while loop最後
- 即可觀察每次inference的執行資訊