Skip to content

Commit

Permalink
Merge pull request #276 from EricLBuehler/quantized_phi3
Browse files Browse the repository at this point in the history
Add the quantized phi3 model
  • Loading branch information
EricLBuehler authored May 9, 2024
2 parents 30e8630 + 33009bd commit 94664f3
Show file tree
Hide file tree
Showing 4 changed files with 355 additions and 2 deletions.
9 changes: 9 additions & 0 deletions mistralrs-core/src/layers.rs
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,15 @@ impl RmsNorm {
weight: w,
})
}

pub fn from_w(w: Tensor, eps: f64) -> Result<Self> {
let inner = candle_nn::RmsNorm::<RmsNormNonQuantized>::new(w.clone(), eps);
Ok(Self {
inner,
eps,
weight: w,
})
}
}

impl Module for RmsNorm {
Expand Down
1 change: 1 addition & 0 deletions mistralrs-core/src/models/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ pub(crate) mod phi2;
pub(crate) mod phi3;
pub(crate) mod quantized_llama;
pub(crate) mod quantized_phi2;
pub(crate) mod quantized_phi3;
pub(crate) mod qwen2;

pub type LayerCaches = Vec<Option<(Tensor, Tensor)>>;
Expand Down
331 changes: 331 additions & 0 deletions mistralrs-core/src/models/quantized_phi3.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,331 @@
#![allow(clippy::cast_possible_truncation, clippy::cast_precision_loss)]

use std::collections::HashMap;

use crate::device_map::DeviceMapper;
use crate::layers::RmsNorm;
use crate::DeviceMapMetadata;
use candle_core::quantized::gguf_file;
use candle_core::quantized::QMatMul;
use candle_core::quantized::QTensor;
use candle_core::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::Embedding;

use super::repeat_kv;
use super::verify_sanity_gguf;
use super::Cache;

#[derive(Debug, Clone)]
struct Mlp {
ffn_up: QMatMul,
ffn_down: QMatMul,
i_size: usize,
}

impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let up_states = xs.apply(&self.ffn_up)?;
let gate = up_states.narrow(D::Minus1, 0, self.i_size)?;
let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?;
let up_states = (up_states * gate.silu()?)?;
up_states.apply(&self.ffn_down)
}
}

fn rms_norm(w: QTensor, eps: f64) -> Result<RmsNorm> {
let w = w.dequantize(&w.device())?;
let rms = RmsNorm::from_w(w, eps)?;
Ok(rms)
}

#[derive(Debug, Clone)]
struct LayerWeights {
attn_qkv: QMatMul,
attn_output: QMatMul,
attn_norm: RmsNorm,
ffn_norm: RmsNorm,
mlp: Mlp,
n_head: usize,
n_kv_head: usize,
head_dim: usize,
cos: Tensor,
sin: Tensor,
neg_inf: Tensor,
sliding_window: usize,
}

fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
let shape = mask.shape();
let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
Ok(m)
}

impl LayerWeights {
fn apply_rotary_emb(&self, xs: &Tensor, seqlen_offsets: &[usize]) -> Result<Tensor> {
let (_b_sz, _h, seq_len, _n_embd) = xs.dims4()?;
let mut outputs = Vec::new();
for (i, offset) in seqlen_offsets.iter().enumerate() {
let cos = self.cos.narrow(0, *offset, seq_len)?;
let sin = self.sin.narrow(0, *offset, seq_len)?;
outputs.push(candle_nn::rotary_emb::rope(
&xs.i(i)?.unsqueeze(0)?.contiguous()?,
&cos,
&sin,
)?);
}
Tensor::cat(&outputs, 0)
}

fn forward_attn(
&mut self,
x: &Tensor,
mask: Option<&Tensor>,
seqlen_offsets: &[usize],
kv_cache: &mut Option<(Tensor, Tensor)>,
) -> Result<Tensor> {
let (b_sz, seq_len, n_embd) = x.dims3()?;
let qkv = self.attn_qkv.forward(x)?;

let query_pos = self.n_head * self.head_dim;
let q = qkv.narrow(D::Minus1, 0, query_pos)?;
let k = qkv.narrow(D::Minus1, query_pos, self.n_kv_head * self.head_dim)?;
let v = qkv.narrow(
D::Minus1,
query_pos + self.n_kv_head * self.head_dim,
self.n_kv_head * self.head_dim,
)?;

let q = q
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
.transpose(1, 2)?;
let k = k
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
.transpose(1, 2)?;
let v = v
.reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
.transpose(1, 2)?;

let q = self.apply_rotary_emb(&q, seqlen_offsets)?.contiguous()?;
let k = self.apply_rotary_emb(&k, seqlen_offsets)?;

let (k, v, attn_mask) = match kv_cache.clone() {
None => (k, v, mask.cloned()),
Some((mut prev_k, mut prev_v)) => {
let mut mask = mask.cloned();
let kv_seq_len = prev_k.dim(2)?;
let sliding_window = self.sliding_window;
if kv_seq_len > sliding_window {
prev_k =
prev_k.narrow(2, kv_seq_len - (sliding_window - 1), sliding_window - 1)?;
prev_v =
prev_v.narrow(2, kv_seq_len - (sliding_window - 1), sliding_window - 1)?;
if let Some(ref mut mask) = mask {
let mask_len = mask.dim(1)?;
*mask =
mask.narrow(1, mask_len - (sliding_window - 1), sliding_window - 1)?;
*mask = Tensor::cat(
&[&*mask, &mask.narrow(1, mask_len - 1, 1)?.ones_like()?],
D::Minus1,
)?;
}
}
let k = Tensor::cat(&[prev_k, k], 2)?;
let v = Tensor::cat(&[prev_v, v], 2)?;
(k, v, mask)
}
};
*kv_cache = Some((k.clone(), v.clone()));

let k = repeat_kv(k, self.n_head / self.n_kv_head)?;
let v = repeat_kv(v, self.n_head / self.n_kv_head)?;

let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
let att = match attn_mask {
None => att,
Some(mask) => {
let mask = mask.broadcast_as(att.shape())?;
masked_fill(&att, &mask, &self.neg_inf)?
}
};
let att = candle_nn::ops::softmax_last_dim(&att)?;
// Convert to contiguous as matmul doesn't support strided vs for now.
let y = att.matmul(&v.contiguous()?)?;
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
let y = self.attn_output.forward(&y)?;
Ok(y)
}
}

#[derive(Debug)]
pub struct ModelWeights {
tok_embeddings: Embedding,
layers: Vec<LayerWeights>,
output_norm: RmsNorm,
output: QMatMul,
masks: HashMap<usize, Tensor>,
mapper: Option<Box<dyn DeviceMapper + Send + Sync>>,
pub device: Device,
pub cache: Cache,
pub max_seq_len: usize,
}

fn precomput_freqs_cis(
head_dim: usize,
freq_base: f32,
device: &Device,
context_window: usize,
) -> Result<(Tensor, Tensor)> {
let theta: Vec<_> = (0..head_dim)
.step_by(2)
.map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
.collect();
let theta = Tensor::new(theta.as_slice(), device)?;
let idx_theta = Tensor::arange(0, context_window as u32, device)?
.to_dtype(DType::F32)?
.reshape((context_window, 1))?
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
let cos = idx_theta.cos()?;
let sin = idx_theta.sin()?;
Ok((cos, sin))
}

impl ModelWeights {
pub fn from_gguf<R: std::io::Seek + std::io::Read>(
ct: gguf_file::Content,
reader: &mut R,
device: &Device,
mapper: DeviceMapMetadata,
) -> Result<Self> {
let md_get = |s: &str| match ct.metadata.get(s) {
None => candle_core::bail!("cannot find {s} in metadata"),
Some(v) => Ok(v),
};
verify_sanity_gguf(md_get("general.architecture")?.to_string().unwrap(), "phi3")?;

// Parameter extraction from metadata.
let head_count = md_get("phi3.attention.head_count")?.to_u32()? as usize;
let head_count_kv = md_get("phi3.attention.head_count_kv")?.to_u32()? as usize;
let block_count = md_get("phi3.block_count")?.to_u32()? as usize;
let embedding_length = md_get("phi3.embedding_length")?.to_u32()? as usize;
let i_size = md_get("phi3.feed_forward_length")?.to_u32()? as usize;
let rope_dim = md_get("phi3.rope.dimension_count")?.to_u32()? as usize;
let rms_eps = md_get("phi3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
let context_window = md_get("phi3.context_length")?.to_u32()? as usize;
let (cos, sin) = precomput_freqs_cis(rope_dim, 10_000., device, context_window)?;
let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;

let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
let tok_embeddings = tok_embeddings.dequantize(device)?;
let output_norm = rms_norm(ct.tensor(reader, "output_norm.weight", device)?, rms_eps)?;
let output = QMatMul::from_qtensor(ct.tensor(reader, "output.weight", device)?)?;
let mut layers = Vec::with_capacity(block_count);
let mapper = mapper.into_mapper(block_count, device)?;
for layer_idx in 0..block_count {
let prefix = format!("blk.{layer_idx}");
let device = mapper.device_for(layer_idx, false).unwrap_or(device);
let ffn_up = QMatMul::from_qtensor(ct.tensor(
reader,
&format!("{prefix}.ffn_up.weight"),
device,
)?)?;
let ffn_down = QMatMul::from_qtensor(ct.tensor(
reader,
&format!("{prefix}.ffn_down.weight"),
device,
)?)?;
let mlp = Mlp {
ffn_up,
ffn_down,
i_size,
};
let attn_norm = rms_norm(
ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?,
rms_eps,
)?;
let ffn_norm = rms_norm(
ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?,
rms_eps,
)?;
layers.push(LayerWeights {
attn_qkv: QMatMul::from_qtensor(ct.tensor(
reader,
&format!("{prefix}.attn_qkv.weight"),
device,
)?)?,
attn_output: QMatMul::from_qtensor(ct.tensor(
reader,
&format!("{prefix}.attn_output.weight"),
device,
)?)?,
attn_norm,
ffn_norm,
mlp,
n_head: head_count,
n_kv_head: head_count_kv,
head_dim: embedding_length / head_count,
cos: cos.clone(),
sin: sin.clone(),
neg_inf: neg_inf.clone(),
sliding_window: context_window,
})
}
Ok(Self {
tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
layers,
output_norm,
output,
masks: HashMap::new(),
mapper: Some(mapper),
device: device.clone(),
cache: Cache::new(block_count, false),
max_seq_len: context_window,
})
}

fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
if let Some(mask) = self.masks.get(&t) {
Ok(mask.clone())
} else {
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), device)?;
self.masks.insert(t, mask.clone());
Ok(mask)
}
}

pub fn forward(&mut self, xs: &Tensor, seqlen_offsets: &[usize]) -> Result<Tensor> {
let (_b_sz, seq_len) = xs.dims2()?;
let mask = if seq_len == 1 {
None
} else {
Some(self.mask(seq_len, xs.device())?)
};
let mut xs = self.tok_embeddings.forward(xs)?;
let mut cache = self.cache.lock();
for (i, layer) in self.layers.iter_mut().enumerate() {
if let Some(ref mapper) = self.mapper {
xs = mapper.map(xs, i)?;
}
let residual = &xs;
let ys = xs.apply(&layer.attn_norm)?;
let ys = layer.forward_attn(
&ys,
mask.as_ref()
.map(|m| m.to_device(xs.device()).unwrap())
.as_ref(),
seqlen_offsets,
&mut cache[i],
)?;
let ys = (ys + residual)?;
let residual = &ys;
let ys = ys.apply(&layer.ffn_norm)?;
let ys = layer.mlp.forward(&ys)?;
xs = (ys + residual)?
}
let xs = xs.to_device(&self.device)?;
let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?;
self.output.forward(&xs)
}
}
Loading

0 comments on commit 94664f3

Please sign in to comment.