Skip to content

Image inpainting tool powered by SOTA AI Model

License

Notifications You must be signed in to change notification settings

DrKenther/lama-cleaner

 
 

Repository files navigation

Lama Cleaner

A free and open-source inpainting tool powered by SOTA AI model.

total download version Open in Colab python version version

example-0.24.0.mp4

Features

  • Completely free and open-source
  • Fully self-hosted
  • Classical image inpainting algorithm powered by cv2
  • Multiple SOTA AI models
    1. LaMa
    2. LDM
    3. ZITS
    4. MAT
    5. FcF
    6. SD1.5
  • Support CPU & GPU
  • Various inpainting strategy
  • Run as a desktop APP

Usage

1. Remove any unwanted things on the image
Usage Before After
Remove unwanted things unwant_object2 unwant_object2
Remove unwanted person unwant_person unwant_person
Remove Text text text
Remove watermark watermark watermark_clean
2. Fix old photo
Usage Before After
Fix old photo oldphoto oldphoto_clean
3. Replace something on the image
Usage Before After
Text Driven Inpainting dog Prompt: a fox sitting on a bench
fox

Quick Start

The easiest way to use Lama Cleaner is to install it using pip:

pip install lama-cleaner

# Models will be downloaded at first time used
lama-cleaner --model=lama --device=cpu --port=8080
# Lama Cleaner is now running at http://localhost:8080

For stable-diffusion model, you need to accepting the terms to access, and get an access token from here huggingface access token

If you prefer to use docker, you can check out docker

Available command line arguments:

Name Description Default
--model lama/ldm/zits/mat/fcf/sd1.5 See details in Inpaint Model lama
--hf_access_token stable-diffusion need huggingface access token to download model
--sd-run-local Once the model as downloaded, you can pass this arg and remove --hf_access_token
--sd-disable-nsfw Disable stable-diffusion NSFW checker.
--sd-cpu-textencoder Always run stable-diffusion TextEncoder model on CPU.
--device cuda or cpu cuda
--port Port for backend flask web server 8080
--gui Launch lama-cleaner as a desktop application
--gui_size Set the window size for the application 1200 900
--input Path to image you want to load by default None
--debug Enable debug mode for flask web server

Inpainting Model

Model Description Config
cv2 👍 No GPU is required, and for simple backgrounds, the results may even be better than AI models.
LaMa 👍 Generalizes well on high resolutions(~2k)
LDM 👍 Possible to get better and more detail result
👍 The balance of time and quality can be achieved by adjusting steps
😐 Slower than GAN model
😐 Need more GPU memory
Steps: You can get better result with large steps, but it will be more time-consuming
Sampler: ddim or plms. In general plms can get better results with fewer steps
ZITS 👍 Better holistic structures compared with previous methods
😐 Wireframe module is very slow on CPU
Wireframe: Enable edge and line detect
MAT TODO
FcF 👍 Better structure and texture generation
😐 Only support fixed size (512x512) input
SD1.5 👍 SOTA text-to-image diffusion model
See model comparison detail

LaMa vs LDM

Original Image LaMa LDM
photo-1583445095369-9c651e7e5d34 photo-1583445095369-9c651e7e5d34_cleanup_lama photo-1583445095369-9c651e7e5d34_cleanup_ldm

LaMa vs ZITS

Original Image ZITS LaMa
zits_original zits_compare_zits zits_compare_lama

Image is from ZITS paper. I didn't find a good example to show the advantages of ZITS and let me know if you have a good example. There can also be possible problems with my code, if you find them, please let me know too!

LaMa vs FcF

Original Image Lama FcF
texture texture_lama texture_fcf

Inpainting Strategy

Lama Cleaner provides three ways to run inpainting model on images, you can change it in the settings dialog.

Strategy Description VRAM Speed
Original Use the resolution of the original image High
Resize Resize the image to a smaller size before inpainting. The area outside the mask will not loss quality. Midium ⚡ ⚡
Crop Crop masking area from the original image to do inpainting Low ⚡ ⚡ ⚡

Download Model Mannually

If you have problems downloading the model automatically when lama-cleaner start, you can download it manually. By default lama-cleaner will load model from TORCH_HOME=~/.cache/torch/hub/checkpoints/, you can set TORCH_HOME to other folder and put the models there.

Development

Only needed if you plan to modify the frontend and recompile yourself.

Frontend

Frontend code are modified from cleanup.pictures, You can experience their great online services here.

  • Install dependencies:cd lama_cleaner/app/ && yarn
  • Start development server: yarn start
  • Build: yarn build

Docker

You can use pre-build docker image to run Lama Cleaner. The model will be downloaded to the cache directory when first time used. You can mount existing cache directory to start the container, so you don't have to download the model every time you start the container.

The cache directories for different models correspond as follows:

  • lama/ldm/zits/mat/fcf: /root/.cache/torch
  • sd1.5: /root/.cache/huggingface

Run Docker (cpu)

docker run -p 8080:8080 \
-v /path/to/torch_cache:/root/.cache/torch \
-v /path/to/huggingface_cache:/root/.cache/huggingface \
--rm lama-cleaner:cpu-0.21.0 \
lama-cleaner --device=cpu --port=8080 --host=0.0.0.0

Run Docker (gpu)

  • cuda11.6
  • pytorch1.12.1
  • minimum nvidia driver 510.39.01+
docker run --gpus all -p 8080:8080 \
-v /path/to/torch_cache:/root/.cache/torch \
-v /path/to/huggingface_cache:/root/.cache/huggingface \
--rm lama-cleaner:cpu-0.21.0 \
lama-cleaner --device=cuda --port=8080 --host=0.0.0.0

Then open http://localhost:8080

Build Docker image

cpu only

docker build -f ./docker/CPUDockerfile -t lamacleaner .

gpu & cpu

docker build -f ./docker/GPUDockerfile -t lamacleaner .

One Click Installer

TODO

About

Image inpainting tool powered by SOTA AI Model

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 60.3%
  • TypeScript 31.7%
  • SCSS 6.9%
  • Other 1.1%