Skip to content

DohyeongKi/regmdc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

regmdc

regmdc is an R package for fitting nonparametric regression models with mixed derivative constraints. Available estimation methods are entirely monotonic regression, Hardy—Krause variation denoising, totally concave regression, MARS via LASSO, and their generalizations. Entirely monotonic regression and Hardy—Krause variation denoising are multivariate generalizations of isotonic regression and total variation denoising, introduced in Fang et al. (2021). MARS via LASSO is a LASSO variant of the usual MARS method, introduced in Ki et al. (2024). It can be thought of not only as a multivariate generalization of locally adaptive regression splines but also as second-order Hardy—Krause variation denoising. Totally concave regression is a multivariate extension of univariate concave regression based on total concavity (see, e.g., Gal (2008)), proposed in Ki and Guntuboyina (2025+).

regmdc mainly consists of the following two generic functions:

  • regmdc()
  • predict_regmdc()

Given an estimation method, regmdc() builds the model fit to data, by solving the corresponding constrained LASSO problem. For details on the LASSO problem of each estimation method, see, for example, Section 3 of Fang et al. (2021) (for entirely monotonic regression and Hardy—Krause variation denoising), Section 2 of Ki et al. (2024) (for MARS via LASSO), and Section 3 of Ki and Guntuboyina (2025+) (for totally concave regression).

Given the model obtained from regmdc(), predict_regmdc() provides predictions at new data points.

Installation

You first need to install MOSEK, a software package for optimization, and then Rmosek, the MOSEK interface in R.

Once they are properly installed, you can install our package by running in R the following commands:

# install.packages("devtools")
devtools::install_github("DohyeongKi/regmdc")

Examples

Here are some examples showing how regmdc can be used. Please refer to the document of each function in the package for more details.

library(regmdc)
################################################################################ 
# (1) Entirely monotonic regression    
# (2) Hardy—Krause variation denoising 
# (3) Generalization of entirely monotonic regression and Hardy—Krause variation denoising 
################################################################################
fstar <- function(x) {(
  (x[1] - 0.25 >= 0) + (x[2] - 0.25 >= 0) 
  + (x[1] - 0.25 >= 0) * (x[2] - 0.25 >= 0)
)}  # the true underlying function
X_design <- expand.grid(rep(list(seq(0, 1, length.out = 10L)), 3L))  # a design matrix
colnames(X_design) <- c("VarA", "VarB", "VarC")
theta <- apply(X_design, MARGIN = 1L, FUN = fstar)  # the values of f* at the design points
sigma <- 0.1  # standard Gaussian noise
y <- theta + sigma * rnorm(nrow(X_design))  # an observation vector of a response variable

# Build an entirely monotonic regression model
# em_model <- regmdc(X_design, y, s = 2L, method = "em")
# em_model <- regmdc(X_design, y, s = 2L, method = "em", is_scaled = TRUE)
em_model <- regmdc(X_design, y, s = 2L, method = "em", is_lattice = TRUE)
# em_model <- regmdc(X_design, y, s = 2L, method = "em",
#                    is_monotonically_increasing = FALSE)
# em_model <- regmdc(X_design, y, s = 2L, method = "em",
#                    increasing_covariates = c(1L, 2L))
# em_model <- regmdc(X_design, y, s = 2L, method = "em",
#                    decreasing_covariates = c(3L))
# em_model <- regmdc(X_design, y, s = 2L, method = "em",
#                    increasing_covariates = c("VarA", "VarB"),
#                    decreasing_covariates = c("VarC"))

# Build a Hardy-Krause variation denoising model
# hk_model <- regmdc(X_design, y, s = 2L, method = "hk", V = 3.0)
# hk_model <- regmdc(X_design, y, s = 2L, method = "hk", V = 3.0, is_scaled = TRUE)
hk_model <- regmdc(X_design, y, s = 2L, method = "hk", V = 3.0, is_lattice = TRUE)

# Build a generalized model
# emhk_model <- regmdc(X_design, y, s = 2L, method = "emhk", V = 2.0, is_lattice = TRUE,
#                      variation_constrained_covariates = c(2L))
# emhk_model <- regmdc(X_design, y, s = 2L, method = "emhk", V = 2.0,
#                      is_monotonically_increasing = FALSE,
#                      variation_constrained_covariates = c("VarB"))
emhk_model <- regmdc(X_design, y, s = 2L, method = "emhk", V = 2.0,
                     increasing_covariates = c(1L),
                     variation_constrained_covariates = c(2L))
# emhk_model <- regmdc(X_design, y, s = 2L, method = "emhk", V = 2.0,
#                      increasing_covariates = c("VarA"),
#                      decreasing_covariates = c("VarC"),
#                      variation_constrained_covariates = c("VarB"))

# Generate predictions at new data points
X_pred <- c(1.0/3, 2.0/3, 1.0/3)
predict_regmdc(em_model, X_pred)
predict_regmdc(hk_model, X_pred)
predict_regmdc(emhk_model, X_pred)
X_pred <- matrix(c(1.0/3, 2.0/3, 1.0/3, 
                   2.0/3, 1.0/3, 2.0/3), 
                 ncol = 3L, byrow = TRUE)
predict_regmdc(em_model, X_pred)
predict_regmdc(hk_model, X_pred)
predict_regmdc(emhk_model, X_pred)
library(regmdc)
################################################################################ 
# (4) Totally concave regression  
# (5) MARS via LASSO
# (6) Generalization of totally concave regression and MARS via LASSO 
################################################################################
fstar <- function(x) {(
  - max(x[1] - 0.25, 0) - max(x[2] - 0.25, 0)
  - max(x[1] - 0.25, 0) * max(x[2] - 0.25, 0)
)}  # the true underlying function

X_design <- cbind(runif(100), runif(100), runif(100))
colnames(X_design) <- c("VarA", "VarB", "VarC")
theta <- apply(X_design, MARGIN = 1L, FUN = fstar)  # the values of f* at the design points
sigma <- 0.1  # standard Gaussian noise
y <- theta + sigma * rnorm(nrow(X_design))  # an observation vector

# Build a totally convex regression model
tc_model <- regmdc(X_design, y, s = 2L, method = "tc")
# tc_model <- regmdc(X_design, y, s = 2L, method = "tc",
#                    is_totally_concave = FALSE)
# tc_model <- regmdc(X_design, y, s = 2L, method = "tc",
#                    concave_covariates = c(1L, 2L))
# tc_model <- regmdc(X_design, y, s = 2L, method = "tc",
#                    convex_covariates = c(3L))
# tc_model <- regmdc(X_design, y, s = 2L, method = "tc",
#                    concave_covariates = c("VarA", "VarB"),
#                    convex_covariates = c("VarC"))
# tc_model <- regmdc(X_design, y, s = 2L, method = "tc",
#                    extra_linear_covariates = c(3L))
# tc_model <- regmdc(X_design, y, s = 2L, method = "tc",
#                    is_totally_concave = FALSE,
#                    extra_linear_covariates = c("VarC"))
# tc_model <- regmdc(X_design, y, s = 2L, method = "tc",
#                    extra_linear_covariates = c(2L, 3L))
# tc_model <- regmdc(X_design, y, s = 2L, method = "tc",
#                    concave_covariates = c("VarA"),
#                    extra_linear_covariates = c("VarC"))
# tc_model <- regmdc(X_design, y, s = 2L, method = "tc",
#                    number_of_bins = 20L,
#                    extra_linear_covariates = c(3L))

# Build a MARS via LASSO model
mars_model <- regmdc(X_design, y, s = 2L, method = "mars", V = 3.0)
# mars_model <- regmdc(X_design, y, s = 2L, method = "mars", V = 3.0,
#                      number_of_bins = 20L)
# mars_model <- regmdc(X_design, y, s = 2L, method = "mars", V = 3.0,
#                      number_of_bins = c(10L, 20L, 20L))
# mars_model <- regmdc(X_design, y, s = 2L, method = "mars", V = 3.0,
#                      number_of_bins = c(10L, 20L, NA))
# mars_model <- regmdc(X_design, y, s = 2L, method = "mars", V = 3.0,
#                      number_of_bins = c(10L, 20L, NA),
#                      extra_linear_covariates = c("VarC"))

# Build a generalized model
# tcmars_model <- regmdc(X_design, y, s = 2L, method = "tcmars", V = 2.0,
#                        variation_constrained_covariates = c(2L))
# tcmars_model <- regmdc(X_design, y, s = 2L, method = "tcmars", V = 2.0,
#                        is_totally_concave = FALSE,
#                        variation_constrained_covariates = c(2L))
tcmars_model <- regmdc(X_design, y, s = 2L, method = "tcmars", V = 2.0,
                       concave_covariates = c(1L),
                       variation_constrained_covariates = c(2L))
# tcmars_model <- regmdc(X_design, y, s = 2L, method = "tcmars", V = 2.0,
#                        concave_covariates = c("VarA"),
#                        convex_covariates = c("VarC"),
#                        variation_constrained_covariates = c("VarB"))
# tcmars_model <- regmdc(X_design, y, s = 2L, method = "tcmars", V = 2.0,
#                        concave_covariates = c(1L),
#                        variation_constrained_covariates = c(2L),
#                        extra_linear_covariates = c(3L))
# tcmars_model <- regmdc(X_design, y, s = 2L, method = "tcmars", V = 2.0, 
#                        number_of_bins = 20L,
#                        concave_covariates = c("VarA"),
#                        variation_constrained_covariates = c("VarB"),
#                        extra_linear_covariates = c("VarC"))

# Generate predictions at new data points
X_pred <- c(1.0/3, 2.0/3, 1.0/3)
predict_regmdc(tc_model, X_pred)
predict_regmdc(mars_model, X_pred)
predict_regmdc(tcmars_model, X_pred)
X_pred <- matrix(c(1.0/3, 2.0/3, 1.0/3, 
                   2.0/3, 1.0/3, 2.0/3), 
                 ncol = 3L, byrow = TRUE)
predict_regmdc(tc_model, X_pred)
predict_regmdc(mars_model, X_pred)
predict_regmdc(tcmars_model, X_pred)

References

[1] Ki, D. and Guntuboyina, A. (2025+). Totally Concave Regression. Available at https://arxiv.org/abs/2501.04360.

[2] Ki, D., Fang, B., and Guntuboyina, A. (2024). MARS via LASSO. Annals of Statistics, 52(3), 1102-1126.

[3] Fang, B., Guntuboyina, A., and Sen, B. (2021). Multivariate extensions of isotonic regression and total variation denoising via entire monotonicity and Hardy—Krause variation. Annals of Statistics, 49(2), 769-792.

[4] Gal, S. G. (2008). Shape-Preserving Approximation by Real and Complex Polynomials. Birkhäuser, Boston.

About

No description, website, or topics provided.

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages