Skip to content

Delaunay/mlbaselines

Repository files navigation

Olympus

Decades of machine learning research at your fingertips.

Features

  • Deterministic Blocks
  • Reproducible baselines for a variety of tasks
  • Integrated Hyperparameter Optimizer (Orion)
  • Experiment Tracking
  • Model Zoo
  • Pretrained Models
  • Multi GPU training
  • Automatic Checkpointing
  • Mixed precision Available

Baselines

Run any baselines in a few lines of code

$ pip install olympus
$ export OLYMPUS_DATA_PATH=/fast
$ olympus --devices 0 classification --batch-size 32 --epochs 10 --dataset mnist --model resnet18
{
  "train_accuracy": 0.6458333333333334,
  "train_loss": 2.109870990117391,
  "elapsed_time": 9,
  "sample_count": 960,
  "epoch": 9,
  "adversary_accuracy": 0.3020833333333333,
  "adversary_loss": 2.234758218129476,
  "adversary_distortion": 0.2575291295846303,
  "validation_accuracy": 0.5986421725239617,
  "validation_loss": 2.108673614815782
}
{
  "temperature.gpu": 34.083333333333336,
  "utilization.gpu": 10.333333333333334,
  "utilization.memory": 0.0,
  "memory.total": 32480.0,
  "memory.free": 31672.833333333332,
  "memory.used": 807.1666666666666
}

Deterministic Blocks

Writing a full pipeline has never been easier, even when optimizing over hyper parameters !

.. literalinclude:: ../examples/hpo_simple.py
   :language: python
   :linenos:


Install

pip install git+git://github.com/mila-iqia/olympus.git

with fANOVA

sudo apt-get install swig
# pip install pyrex
pip install fanova

About

Modular Framework for Machine Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages