Skip to content
/ CSF Public
forked from jianboqi/CSF

Perception section: LiDAR point cloud ground filtering / segmentation (bare earth extraction) method based on cloth simulation

License

Notifications You must be signed in to change notification settings

DeepX-inc/CSF

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

csf1 csf2

CSF

Airborne LiDAR filtering method based on Cloth Simulation. This is the code for the article:

W. Zhang, J. Qi*, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, “An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation,” Remote Sens., vol. 8, no. 6, p. 501, 2016. (http://www.mdpi.com/2072-4292/8/6/501/htm)

New feature has been implemented:

Now, We has wrapped a Python interface for CSF with swig. It is simpler to use now. This new feature can make CSF easier to be embeded into a large project. For example, it can work with Laspy (https://github.com/laspy/laspy). What you do is just read a point cloud into a python 2D list, and pass it to CSF. The following example shows how to use it with laspy.

# coding: utf-8
import laspy
import CSF
import numpy as np

inFile = laspy.read(r"in.las") # read a las file
points = inFile.points
xyz = np.vstack((inFile.x, inFile.y, inFile.z)).transpose() # extract x, y, z and put into a list

csf = CSF.CSF()

# prameter settings
csf.params.bSloopSmooth = False
csf.params.cloth_resolution = 0.5
# more details about parameter: http://ramm.bnu.edu.cn/projects/CSF/download/

csf.setPointCloud(xyz)
ground = CSF.VecInt()  # a list to indicate the index of ground points after calculation
non_ground = CSF.VecInt() # a list to indicate the index of non-ground points after calculation
csf.do_filtering(ground, non_ground) # do actual filtering.

outFile = laspy.LasData(inFile.header)
outFile.points = points[ground] # extract ground points, and save it to a las file.
out_file.write(r"out.las")

Reading data from txt file:

If the lidar data is stored in txt file (x y z for each line), it can also be imported directly.

import CSF

csf = CSF.CSF()
csf.readPointsFromFile('samp52.txt')

csf.params.bSloopSmooth = False
csf.params.cloth_resolution = 0.5

ground = CSF.VecInt()  # a list to indicate the index of ground points after calculation
non_ground = CSF.VecInt() # a list to indicate the index of non-ground points after calculation
csf.do_filtering(ground, non_ground) # do actual filtering.
csf.savePoints(ground,"ground.txt")

How to use CSF in Python

Download the source code. under python folder:

python setup.py build
python setup.py install 

How to use CSF in Matlab

see more details from file demo_mex.m under matlab folder.

How to use CSF in R

Thanks to the nice work of @Jean-Romain, through the collaboration, the CSF has been made as a R package, the details can be found in the RCSF repository. This package can be used easily with the lidR package:

library(lidR)
las  <- readLAS("file.las")
las  <- lasground(las, csf())

How to use CSF in C++

Now, CSF is built by CMake, it produces a static library, which can be used by other c++ programs.

linux

To build the library, run:

mkdir build #or other name
cd build
cmake ..
make
sudo make install

or if you want to build the library and the demo executable csfdemo

mkdir build #or other name
cd build
cmake -DBUILD_DEMO=ON ..
make
sudo make install

Windows

You can use CMake GUI to generate visual studio solution file.

Binary Version

For binary release version, it can be downloaded at: http://ramm.bnu.edu.cn/projects/CSF/download/

Note: This code has been changed a lot since the publication of the corresponding paper. A lot of optimizations have been made. We are still working on it, and wish it could be better.

Cloudcompare Pulgin

At last, if you are interested in Cloudcompare, there is a good news. our method has been implemented as a Cloudcompare plugin, you can refer to : https://github.com/cloudcompare/trunk

Related project

A tool named CSFTools has been recently released, it is based on CSF, and provides dem/chm generation, normalization. Please refer to: https://github.com/jianboqi/CSFTools

License

CSF is maintained and developed by Jianbo QI. It is now released under Apache 2.0.

About

Perception section: LiDAR point cloud ground filtering / segmentation (bare earth extraction) method based on cloth simulation

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 92.8%
  • Python 5.6%
  • MATLAB 1.4%
  • Other 0.2%